Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing
Abstract
1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Four-Photon Stark Shift
3. Results
3.1. Beam Power and Polarization
3.2. Beam Intensity Profiles and Alignments
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- DiVincenzo, D.P. Two-bit gates are universal for quantum computation. Phys. Rev. A 1995, 51, 1015. [Google Scholar] [CrossRef]
- Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457. [Google Scholar] [CrossRef]
- Cirac, J.I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091. [Google Scholar] [CrossRef]
- Mølmer, K.; Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 1999, 82, 1835. [Google Scholar] [CrossRef]
- Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G.P.; Deuschle, T.; Becher, C.; Roos, C.F.; Eschner, J.; Blatt, R. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 2003, 422, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Leibfried, D.; DeMarco, B.; Meyer, V.; Lucas, D.; Barrett, M.; Britton, J.; Itano, W.M.; Jelenković, B.; Langer, C.; Rosenband, T.; et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 2003, 422, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Crain, S.; Mount, E.; Baek, S.; Kim, J. Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 2014, 105, 181115. [Google Scholar] [CrossRef]
- Lee, A.C.; Smith, J.; Richerme, P.; Neyenhuis, B.; Hess, P.W.; Zhang, J.; Monroe, C. Engineering large Stark shifts for control of individual clock state qubits. Phys. Rev. A 2016, 94, 042308. [Google Scholar] [CrossRef]
- Wright, K.; Beck, K.; Debnath, S.; Amini, J.; Nam, Y.; Grzesiak, N.; Chen, J.S.; Pisenti, N.; Chmielewski, M.; Collins, C.; et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 2019, 10, 5464. [Google Scholar] [CrossRef]
- Pogorelov, I.; Feldker, T.; Marciniak, C.D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2021, 2, 020343. [Google Scholar] [CrossRef]
- Wineland, D.J.; Monroe, C.; Itano, W.M.; Leibfried, D.; King, B.E.; Meekhof, D.M. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 1998, 103, 259. [Google Scholar] [CrossRef] [PubMed]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155–203. [Google Scholar] [CrossRef]
- Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019, 6, 021314. [Google Scholar] [CrossRef]
- Monroe, C.; Campbell, W.; Duan, L.M.; Gong, Z.X.; Gorshkov, A.; Hess, P.; Islam, R.; Kim, K.; Linke, N.; Pagano, G.; et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 2021, 93, 025001. [Google Scholar] [CrossRef]
- Blinov, B.B.; Leibfried, D.; Monroe, C.; Wineland, D.J. Quantum computing with trapped ion hyperfine qubits. Quantum Inf. Process. 2004, 3, 45–59. [Google Scholar] [CrossRef]
- Olmschenk, S.; Younge, K.C.; Moehring, D.L.; Matsukevich, D.N.; Maunz, P.; Monroe, C. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 2007, 76, 052314. [Google Scholar] [CrossRef]
- Benhelm, J.; Kirchmair, G.; Roos, C.; Blatt, R. Experimental quantum-information processing with 43Ca+ ions. Phys. Rev. A 2008, 77, 062306. [Google Scholar] [CrossRef]
- Keselman, A.; Glickman, Y.; Akerman, N.; Kotler, S.; Ozeri, R. High-fidelity state detection and tomography of a single-ion Zeeman qubit. New J. Phys. 2011, 13, 073027. [Google Scholar] [CrossRef]
- Ruster, T.; Schmiegelow, C.T.; Kaufmann, H.; Warschburger, C.; Schmidt-Kaler, F.; Poschinger, U.G. A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 2016, 122, 254. [Google Scholar] [CrossRef]
- Ozeri, R.; Itano, W.M.; Blakestad, R.; Britton, J.; Chiaverini, J.; Jost, J.D.; Langer, C.; Leibfried, D.; Reichle, R.; Seidelin, S.; et al. Errors in trapped-ion quantum gates due to spontaneous photon scattering. Phys. Rev. A 2007, 75, 042329. [Google Scholar] [CrossRef]
- Xie, Y.; Cui, J.; D’Onofrio, M.; Rasmusson, A.; Howell, S.W.; Richerme, P. An open-endcap blade trap for radial-2D ion crystals. Quantum Sci. Technol. 2021, 6, 044009. [Google Scholar] [CrossRef]
- Metcalf, H.J.; Van der Straten, P. Laser Cooling and Trapping; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Campbell, W.C.; Mizrahi, J.; Quraishi, Q.; Senko, C.; Hayes, D.; Hucul, D.; Matsukevich, D.N.; Maunz, P.; Monroe, C. Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 2010, 105, 090502. [Google Scholar] [CrossRef]
- Wineland, D.J.; Barrett, M.; Britton, J.; Chiaverini, J.; DeMarco, B.; Itano, W.M.; Jelenković, B.; Langer, C.; Leibfried, D.; Meyer, V.; et al. Quantum information processing with trapped ions. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2003, 361, 1349–1361. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Luan, C.Y.; Zou, M.; Yin, Z.; Rehan, K.; Kim, K. Precision Polarization Tuning for Light Shift Mitigation in Trapped-Ion Qubits. arXiv 2025, arXiv:2504.19474. [Google Scholar] [CrossRef]
- Mizrahi, J.; Neyenhuis, B.; Johnson, K.; Campbell, W.; Senko, C.; Hayes, D.; Monroe, C. Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B 2014, 114, 45–61. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, I.; Schroer, F.G.; Richerme, P. Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing. Entropy 2025, 27, 1115. https://doi.org/10.3390/e27111115
Jung I, Schroer FG, Richerme P. Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing. Entropy. 2025; 27(11):1115. https://doi.org/10.3390/e27111115
Chicago/Turabian StyleJung, Ilyoung, Frank G. Schroer, and Philip Richerme. 2025. "Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing" Entropy 27, no. 11: 1115. https://doi.org/10.3390/e27111115
APA StyleJung, I., Schroer, F. G., & Richerme, P. (2025). Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing. Entropy, 27(11), 1115. https://doi.org/10.3390/e27111115

