Entropy Production and Irreversibility in the Linearized Stochastic Amari Neural Model
Abstract
1. Neural Dynamics Irreversibility and Statistical Mechanics
2. Entropy Production in Non-Equilibrium Statistical Mechanics
3. Linearized Stochastic Amari Model: Equilibrium Properties
4. Entropy Production from the Lebowitz–Spohn Formula
5. Entropy Production from Shannon Entropy
6. Entropy Production in Bulk: An Explicit Formula
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buice, M.A.; Cowan, J.D. Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 75, 051919. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar] [CrossRef]
- Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 1977, 27, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Amari, S.; Kishimoto, K. Dynamics of excitation patterns in lateral inhibitory neural fields. Electron. Commun. Japan 1978, 61, 1–8. [Google Scholar]
- Beggs, J.M.; Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 2003, 23, 11167–11177. [Google Scholar] [CrossRef]
- Buice, M.A.; Cowan, J.D. Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol. 2009, 99, 53–86. [Google Scholar] [CrossRef]
- de Arcangelis, L.; Lombardi, F.; Herrmann, H. Criticality in the brain. J. Stat. Mech. Theory Exp. 2014, 2014, P03026. [Google Scholar] [CrossRef]
- di Santo, S.; Burioni, R.; Vezzani, A.; Muñoz, M.A. Self-Organized Bistability Associated with First-Order Phase Transitions. Phys. Rev. Lett. 2016, 116, 240601. [Google Scholar] [CrossRef] [PubMed]
- Buendía, V.; di Santo, S.; Villegas, P.; Burioni, R.; Muñoz, M.A. Self-organized bistability and its possible relevance for brain dynamics. Phys. Rev. Res. 2020, 2, 013318. [Google Scholar] [CrossRef]
- Lynn, C.W.; Cornblath, E.J.; Papadopoulos, L.; Bertolero, M.A.; Bassett, D.S. Broken detailed balance and entropy production in the human brain. Proc. Natl. Acad. Sci. USA 2021, 118, e2109889118. [Google Scholar] [CrossRef]
- Sarracino, A.; Arviv, O.; Shriki, O.; de Arcangelis, L. Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity. Phys. Rev. Res. 2020, 2, 033355. [Google Scholar] [CrossRef]
- Nandi, M.K.; de Candia, A.; Sarracino, A.; Herrmann, H.J.; de Arcangelis, L. Fluctuation-dissipation relations in the imbalanced Wilson-Cowan model. Phys. Rev. E 2023, 107, 064307. [Google Scholar] [CrossRef] [PubMed]
- Monti, J.M.; Perl, Y.S.; Tagliazucchi, E.; Kringelbach, M.L.; Deco, G. Fluctuation-dissipation theorem and the discovery of distinctive off-equilibrium signatures of brain states. Phys. Rev. Res. 2025, 7, 013301. [Google Scholar] [CrossRef]
- Lucente, D.; Baldovin, M.; Cecconi, F.; Cencini, M.; Cocciaglia, N.; Puglisi, A.; Viale, M.; Vulpiani, A. Conceptual and practical approaches for investigating irreversible processes. New J. Phys. 2025, 27, 041201. [Google Scholar] [CrossRef]
- Ruelle, D. Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 1996, 85, 1–23. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Spohn, H. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 1999, 95, 333–365. [Google Scholar] [CrossRef]
- Kringelbach, M.L.; Perl, Y.S.; Deco, G. The thermodynamics of mind. Trends Cogn. Sci. 2024, 28, 568–581. [Google Scholar] [CrossRef]
- Nartallo-Kaluarachchi, R.; Kringelbach, M.L.; Deco, G.; Lambiotte, R.; Goriely, A. Nonequilibrium physics of brain dynamics. arXiv 2025, arXiv:2504.12188. [Google Scholar] [CrossRef]
- Nartallo-Kaluarachchi, R.; Asllani, M.; Deco, G.; Kringelbach, M.L.; Goriely, A.; Lambiotte, R. Broken detailed balance and entropy production in directed networks. Phys. Rev. E 2024, 110, 034313. [Google Scholar] [CrossRef]
- Nartallo-Kaluarachchi, R.; Bonetti, L.; Fernández-Rubio, G.; Vuust, P.; Deco, G.; Kringelbach, M.L.; Lambiotte, R.; Goriely, A. Multilevel irreversibility reveals higher-order organization of nonequilibrium interactions in human brain dynamics. Proc. Natl. Acad. Sci. USA 2025, 122, e2408791122. [Google Scholar] [CrossRef]
- Geli, S.M.; Lynn, C.W.; Kringelbach, M.L.; Deco, G.; Perl, Y.S. Non-equilibrium whole-brain dynamics arise from pairwise interactions. Cell Rep. Phys. Sci. 2025, 6, 102464. [Google Scholar] [CrossRef]
- Gilson, M.; Tagliazucchi, E.; Cofré, R. Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain. Phys. Rev. E 2023, 107, 024121. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, D.; Ito, S.; Oizumi, M. Decomposing thermodynamic dissipation of linear Langevin systems via oscillatory modes and its application to neural dynamics. Phys. Rev. X 2024, 14, 041003. [Google Scholar] [CrossRef]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Sarracino, A.; Puglisi, A.; Vulpiani, A. Nonequilibrium Statistical Mechanics: Basic Concepts, Models and Applications; IOP Publishing: Bristol, UK, 2025. [Google Scholar]
- Nardini, C.; Fodor, É.; Tjhung, E.; Van Wijland, F.; Tailleur, J.; Cates, M.E. Entropy production in field theories without time-reversal symmetry: Quantifying the non-equilibrium character of active matter. Phys. Rev. X 2017, 7, 021007. [Google Scholar] [CrossRef]
- Sekimoto, K. Stochastic Energetics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- Peliti, L.; Pigolotti, S. Stochastic Thermodynamics: An Introduction; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Sokolov, I.M. Ito, Stratonovich, Hänggi and all the rest: The thermodynamics of interpretation. Chem. Phys. 2010, 375, 359–363. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Metzler, R. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. arXiv 2015, arXiv:1502.04035. [Google Scholar] [CrossRef]
- Coombes, S.; Graben, P.B.; Potthast, R.; Wright, J. Neural Fields: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Bressloff, P.C. Spatiotemporal dynamics of continuum neural fields. J. Phys. A Math. Theor. 2011, 45, 033001. [Google Scholar] [CrossRef]
- Sompolinsky, H.; Crisanti, A.; Sommers, H.J. Chaos in Random Neural Networks. Phys. Rev. Lett. 1988, 61, 259–262. [Google Scholar] [CrossRef]
- Crisanti, A.; Sompolinsky, H. Path integral approach to random neural networks. Phys. Rev. E 2018, 98, 062120. [Google Scholar] [CrossRef]
- Onsager, L.; Machlup, S. Fluctuations and irreversible processes. Phys. Rev. 1953, 91, 1505. [Google Scholar] [CrossRef]
- Machlup, S.; Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev. 1953, 91, 1512. [Google Scholar] [CrossRef]
- Gardiner, C.W.; Crispin, W. Handbook of Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3. [Google Scholar]
- Lucente, D.; Baldassarri, A.; Puglisi, A.; Vulpiani, A.; Viale, M. Inference of time irreversibility from incomplete information: Linear systems and its pitfalls. Phys. Rev. Res. 2022, 4, 043103. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 2005, 95, 040602. [Google Scholar] [CrossRef]
- O’Byrne, J.; Cates, M. Geometric theory of (extended) time-reversal symmetries in stochastic processes: II. Field theory. J. Stat. Mech. Theory Exp. 2025, 2025, 053204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucente, D.; Gradenigo, G.; Salasnich, L. Entropy Production and Irreversibility in the Linearized Stochastic Amari Neural Model. Entropy 2025, 27, 1104. https://doi.org/10.3390/e27111104
Lucente D, Gradenigo G, Salasnich L. Entropy Production and Irreversibility in the Linearized Stochastic Amari Neural Model. Entropy. 2025; 27(11):1104. https://doi.org/10.3390/e27111104
Chicago/Turabian StyleLucente, Dario, Giacomo Gradenigo, and Luca Salasnich. 2025. "Entropy Production and Irreversibility in the Linearized Stochastic Amari Neural Model" Entropy 27, no. 11: 1104. https://doi.org/10.3390/e27111104
APA StyleLucente, D., Gradenigo, G., & Salasnich, L. (2025). Entropy Production and Irreversibility in the Linearized Stochastic Amari Neural Model. Entropy, 27(11), 1104. https://doi.org/10.3390/e27111104

