Semantic Information Theory and Applications
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Zhou, Y.; Wen, D.; Wu, Y.; Jiang, C.; Letaief, K.B. Task-Oriented Communications for 6G: Vision, Principles, and Technologies. IEEE Wirel. Commun. 2023, 30, 78–85. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Friha, O.; Kantarci, B.; Tihanyi, N.; Cordeiro, L.C.; Debbah, M.; Hamouda, D.; Al-Hawawreh, M.; Choo, K.R. Edge Learning for 6G-Enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses. IEEE Commun. Surv. Tutor. 2023, 25, 2654–2713. [Google Scholar] [CrossRef]
- Yang, W.; Du, H.; Liew, Z.Q.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.; Chi, X.; Shen, X.S.; Miao, C. Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges. IEEE Commun. Surv. Tutor. 2022, 25, 213–250. [Google Scholar] [CrossRef]
- Tao, M.; Zhou, Y.; Shi, Y.; Lu, J.; Cui, S.; Lu, J.; Letaief, K.B. Federated Edge Learning for 6G: Foundations, Methodologies, and Applications. Proc. IEEE 2024, 1–39. [Google Scholar] [CrossRef]
- Wever, W. Recent contributions to the mathematical theory of communication. In ETC: A Review of General Semantics; Institute of General Semantics: New York, NY, USA, 1953; pp. 261–281. [Google Scholar]
- Gündüz, D.; Qin, Z.; Aguerri, I.E.; Dhillon, H.S.; Yang, Z.; Yener, A.; Wong, K.K.; Chae, C.B. Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications. IEEE J. Sel. Areas Commun. 2023, 41, 5–41. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Y.; Ma, S.; Jiang, C.; Zhang, W.; Letaief, K.B. Toward Effective and Interpretable Semantic Communications. IEEE Netw. 2024, 38, 55–62. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Li, G.Y.; Juang, B.H. Deep Learning Enabled Semantic Communication Systems. IEEE Trans. Signal Process. 2021, 69, 2663–2675. [Google Scholar] [CrossRef]
- Niu, K.; Zhang, P. A mathematical theory of semantic communication. J. Commun. 2024, 45, 7–59. Available online: https://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2024111/ (accessed on 15 October 2025).
- Niu, K.; Zhang, P. The Mathematical Theory of Semantic Commnication; Springer: Singapore, 2025. [Google Scholar]
- Lu, C. A Semantic Generalization of Shannon’s Information Theory and Applications. Entropy 2025, 27, 461. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Wu, Q.; Fan, P.; Fan, Q. A Survey on Semantic Communications in Internet of Vehicles. Entropy 2025, 27, 445. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Niu, K.; Xu, J.; Zhang, P. Semantic Arithmetic Coding Using Synonymous Mappings. Entropy 2025, 27, 429. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Zhu, H.; Xiao, Y.; Shi, G.; Zhang, P. On the Rate-Distortion Theory for Task-Specific Semantic Communication. Entropy 2025, 27, 775. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Bai, B.; Guo, N.; Zhang, W.; Han, W. Rate–Distortion–Perception Trade-Off in Information Theory, Generative Models, and Intelligent Communications. Entropy 2025, 27, 373. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, Y.; Sun, Y.; Niu, K.; Ma, N.; Cui, S.; Zhang, P. Extended Blahut–Arimoto Algorithm for Semantic Rate-Distortion Function. Entropy 2025, 27, 651. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, J.; Zhang, W. Soft Classification in a Composite Source Model. Entropy 2025, 27, 620. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yang, Q. Rate-Distortion Analysis of Distributed Indirect Source Coding. Entropy 2025, 27, 844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Ji, B.; Chen, A.; Liu, A.; Xu, H. Feature-Driven Semantic Communication for Efficient Image Transmission. Entropy 2025, 27, 369. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Shamai (Shitz), S. Broadcast Channel Cooperative Gain: An Operational Interpretation of Partial Information Decomposition. Entropy 2025, 27, 310. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, Y.; Lian, L.; Tao, M. Importance-Aware Resource Allocations for MIMO Semantic Communication. Entropy 2025, 27, 605. [Google Scholar] [CrossRef] [PubMed]
- Kutay, E.; Yener, A. Harnessing the Power of Pre-Trained Models for Efficient Semantic Communication of Text and Images. Entropy 2025, 27, 813. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, M.; Niu, K.; Wu, Y. Semantic Information Theory and Applications. Entropy 2025, 27, 1092. https://doi.org/10.3390/e27111092
Tao M, Niu K, Wu Y. Semantic Information Theory and Applications. Entropy. 2025; 27(11):1092. https://doi.org/10.3390/e27111092
Chicago/Turabian StyleTao, Meixia, Kai Niu, and Youlong Wu. 2025. "Semantic Information Theory and Applications" Entropy 27, no. 11: 1092. https://doi.org/10.3390/e27111092
APA StyleTao, M., Niu, K., & Wu, Y. (2025). Semantic Information Theory and Applications. Entropy, 27(11), 1092. https://doi.org/10.3390/e27111092
