Relativistic Limits on the Discretization and Temporal Resolution of a Quantum Clock
Abstract
1. Introduction
2. Clock with Equally Spaced Energy Spectrum
2.1. The Quantum Clock
- For , we can introduce the Hermitian operator
- For , the number of time states is greater than the number of energy states, and the time observable is represented by a POVM with elements . The resolution of identity is indeed still satisfied even if the time states are not orthogonal.
- In the limiting case , it is possible to redefine the time states as
2.2. Limit in Discretizing Time
2.3. Limit in Resolving Time
3. Clock with Generic Spectrum
3.1. The Generalized Quantum Clock
3.2. Limit in Discretizing Time
3.3. Limit in Resolving Time
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gambini, R.; Pullin, J. Fundamental bound for time measurements and minimum uncertainty clocks. J. Phys. Commun. 2020, 4, 065008. [Google Scholar] [CrossRef]
- Karolyhazy, F. Gravitation and quantum mechanics of macroscopic objects. Nuovo Cimento A 1966, 42, 390–402. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Limit to space-time measurement. Mod. Phys. Lett. A 1994, 9, 335–340. [Google Scholar] [CrossRef]
- Ng, Y.J.; van Dam, H. Limitation to Quantum Measurements of Space-Time Distances. Ann. N. Y. Acad. Sci. 1995, 755, 579–584. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Limits on the measurability of space-time distances in (the semiclassical approximation of) quantum gravity. Mod. Phys. Lett. A 1994, 9, 3415–3422. [Google Scholar] [CrossRef]
- Greiner, W. Relativistic Quantum Mechanics. Wave Equations; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar] [CrossRef]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Peres, A. Measurement of time by quantum clocks. Am. J. Phys. 1980, 48, 552–557. [Google Scholar] [CrossRef]
- Pegg, D.T. Complement of the Hamiltonian. Phys. Rev. A 1998, 58, 4307. [Google Scholar] [CrossRef]
- Favalli, T. Complement of the Hamiltonian. In On the Emergence of Time and Space in Closed Quantum Systems; Springer Theses; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Pegg, D.T.; Barnett, S.M. Unitary Phase Operator in Quantum Mechanics. Europhys. Lett. 1988, 6, 483. [Google Scholar] [CrossRef]
- Pegg, D.T.; Barnett, S.M. Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 1989, 39, 1665. [Google Scholar] [CrossRef]
- Hilgevoord, J. Time in quantum mechanics. Am. J. Phys. 2002, 70, 301–306. [Google Scholar] [CrossRef]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Salecker, H.; Wigner, E.P. Quantum Limitations of the Measurement of Space-Time Distances. Phys. Rev. 1958, 109, 571. [Google Scholar] [CrossRef]
- Wigner, E.P. Relativistic Invariance and Quantum Phenomena. Rev. Mod. Phys. 1957, 29, 255. [Google Scholar] [CrossRef]
- Page, D.N.; Wootters, W.K. Evolution whitout evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885. [Google Scholar] [CrossRef]
- Wootters, W.K. “Time”replaced by quantum correlations. Int. J. Theor. Phys. 1984, 23, 701–711. [Google Scholar] [CrossRef]
- Favalli, T. On the Emergence of Time and Space in Closed Quantum Systems; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Favalli, T.; Smerzi, A. Time Observables in a Timeless Universe. Quantum 2020, 4, 354. [Google Scholar] [CrossRef]
- Favalli, T.; Smerzi, A. Peaceful coexistence of thermal equilibrium and the emergence of time. Phys. Rev. D 2022, 105, 023525. [Google Scholar] [CrossRef]
- Favalli, T.; Smerzi, A. A model of quantum spacetime. AVS Quantum Sci. 2022, 4, 044403. [Google Scholar] [CrossRef]
- Favalli, T.; Smerzi, A. Time Dilation of Quantum Clocks in a Relativistic Gravitational Potential. Entropy 2025, 27, 489. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum time. Phys. Rev. D 2015, 92, 045033. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. Evolution without evolution and without ambiguities. Phys. Rev. D 2017, 95, 043510. [Google Scholar] [CrossRef]
- Vedral, V. Time, (Inverse) Temperature and Cosmological Inflation as Entanglement. In Time in Physics; Renner, R., Stupar, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 27–42. [Google Scholar] [CrossRef]
- Maccone, L.; Sacha, K. Quantum measurements of time. Phys. Rev. Lett. 2020, 124, 110402. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.H.; Ahmadi, M. Quantizing time: Interacting clocks and systems. Quantum 2019, 3, 160. [Google Scholar] [CrossRef]
- Smith, A.R.H.; Ahmadi, M. Quantum clocks observe classical and quantum time dilation. Nat. Commun. 2020, 11, 5360. [Google Scholar] [CrossRef] [PubMed]
- Boette, A.; Rossignoli, R. History states of systems and operators. Phys. Rev. A 2018, 98, 032108. [Google Scholar] [CrossRef]
- Boette, A.; Rossignoli, R.; Gigena, N.; Cerezo, M. System-time entanglement in a discrete time model. Phys. Rev. A 2016, 93, 062127. [Google Scholar] [CrossRef]
- Moreva, E.; Brida, G.; Gramegna, M.; Giovannetti, V.; Maccone, L.; Genovese, M. Time from quantum entanglement: An experimental illustration. Phys. Rev. A 2014, 89, 052122. [Google Scholar] [CrossRef]
- Moreva, E.; Gramegna, M.; Brida, G.; Maccone, L.; Genovese, M. Quantum time: Experimental multitime correlations. Phys. Rev. D 2017, 96, 102005. [Google Scholar] [CrossRef]
- Margolus, N.; Levitin, L.B. The maximum speed of dynamical evolution. Phys. D Nonlinear Phenom. 1998, 120, 188–195. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum limits to dynamical evolution. Phys. Rev. A 2003, 67, 052109. [Google Scholar] [CrossRef]
- Busch, P. The Time-Energy Uncertainty Relation. In Time in Quantum Mechanics; Muga, J.G., Mayato, R.S., Egusquiza, Í.L., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 734. [Google Scholar] [CrossRef]
- Hilgevoord, J. The uncertainty principle for energy and time. Am. J. Phys. 1996, 64, 1451–1456. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef]
- Maccone, L. A fundamental problem in quantizing general relativity. Found. Phys. 2019, 49, 1394–1403. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum reference systems. Class. Quantum Grav. 1991, 8, 317. [Google Scholar] [CrossRef]
- Rovelli, C. Relational quantum mechanics. Int. J. Theor. Phys. 1996, 35, 1637–1678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favalli, T. Relativistic Limits on the Discretization and Temporal Resolution of a Quantum Clock. Entropy 2025, 27, 1068. https://doi.org/10.3390/e27101068
Favalli T. Relativistic Limits on the Discretization and Temporal Resolution of a Quantum Clock. Entropy. 2025; 27(10):1068. https://doi.org/10.3390/e27101068
Chicago/Turabian StyleFavalli, Tommaso. 2025. "Relativistic Limits on the Discretization and Temporal Resolution of a Quantum Clock" Entropy 27, no. 10: 1068. https://doi.org/10.3390/e27101068
APA StyleFavalli, T. (2025). Relativistic Limits on the Discretization and Temporal Resolution of a Quantum Clock. Entropy, 27(10), 1068. https://doi.org/10.3390/e27101068