Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient †
Abstract
1. Introduction
2. Basic Relationships
3. Formulation of the Virial Terms from ODEs
3.1. Classical Term of the Virial
3.2. QC1 Term of the Virial
3.3. Values of the Constants in the Linear Combination
3.3.1. Method 1: Two-Point Boundary Value Problem
3.3.2. Method 2: Asymptotic Series Expansion
Classical Virial Coefficient ()
Quantum Virial Coefficient ()
4. Discussion: Mathematical Structure and Physical Implications
4.1. The Rich Interconnectedness of the Analytical Solutions
4.2. The Emergent Schrödinger-like Structure
4.3. Evidence for Universality: The Square-Well Fluid
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LJ | Lennard-Jones |
| ODE | Ordinary Differential Equation |
| SVC | Second Virial Coefficient |
Appendix A. Derivation of the ODE for the Classical Approximation
Appendix B. Derivation of the ODE for the First Quantum Correction
References
- Jones, J.E. On the determination of molecular fields. II. From the equation of state of a gas. R. Soc. Lond. A Math. Phys. Eng. Sci. 1924, 106, 463–477. [Google Scholar]
- Lenhard, J.; Stephan, S.; Hasse, H. On the History of the Lennard–Jones Potential. Ann. Phys. 2024, 536, 2400115. [Google Scholar] [CrossRef]
- Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 1964, 136, A405–A411. [Google Scholar] [CrossRef]
- Schwerdtfeger, P.; Wales, D.J. 100 Years of the Lennard-Jones Potential. J. Chem. Theory Comput. 2024, 20, 3379–3405. [Google Scholar] [CrossRef]
- Jones, J.E. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. R. Soc. Lond. A Math. Phys. Eng. Sci. 1924, 106, 441–462. [Google Scholar]
- Mamedov, B.; Somuncu, E. Analytical treatment of second virial coefficient over Lennard-Jones (2n − n) potential and its application to molecular systems. J. Mol. Struct. 2014, 1068, 164–169. [Google Scholar]
- Kihara, T. Virial coefficients and models of molecules in gases. Rev. Mod. Phys. 1953, 25, 831. [Google Scholar] [CrossRef]
- Epstein, L.F.; Roe, G.M. Low Temperature Second Virial Coefficients for a 6–12 Potential. J. Chem. Phys. 1951, 19, 1320–1321. [Google Scholar] [CrossRef]
- Epstein, L.F. Low Temperature Second Virial Coefficients for a Lennard-Jones Gas. J. Chem. Phys. 1952, 20, 1670–1672. [Google Scholar] [CrossRef]
- Nosanow, L.; Mayer, J. On the Virial Coefficients for a Lennard-Jones Gas. J. Chem. Phys. 1958, 28, 874–877. [Google Scholar] [CrossRef]
- Michels, H. Low-Temperature Quantum Corrections to the Second Virial Coefficient. Phys. Fluids 1966, 9, 1352–1358. [Google Scholar] [CrossRef]
- Heyes, D.; Rickayzen, G.; Pieprzyk, S.; Brańka, A. The second virial coefficient and critical point behavior of the Mie Potential. J. Chem. Phys. 2016, 145, 084505. [Google Scholar] [CrossRef] [PubMed]
- Eu, B.C. Exact analytic second virial coefficient for the Lennard-Jones fluid. arXiv 2009, arXiv:0909.3326. [Google Scholar] [CrossRef]
- Garrett, A. A closed form for the second virial coefficient of the Lennard-Jones gas. J. Phys. A Math. Gen. 1980, 13, 379. [Google Scholar]
- Santos, A. Playing with marbles: Structural and thermodynamic properties of hard-sphere systems. arXiv 2013, arXiv:1310.5578. [Google Scholar] [CrossRef]
- Santos, A. A Concise Course on the Theory of Classical Liquids; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Glasser, M. Second virial coefficient for a Lennard-Jones (2n − n) system in d dimensions and confined to a nanotube surface. Phys. Lett. A 2002, 300, 381–384. [Google Scholar]
- González-Calderón, A.; Rocha-Ichante, A. Second virial coefficient of a generalized Lennard-Jones potential. J. Chem. Phys. 2015, 142, 034305. [Google Scholar] [CrossRef] [PubMed]
- Vargas, P.; Muñoz, E.; Rodriguez, L. Second virial coefficient for the Lennard-Jones potential. Phys. A Stat. Mech. Its Appl. 2001, 290, 92–100. [Google Scholar]
- Kihara, T. Virial Coefficients and Models of Molecules in Gases. B. Rev. Mod. Phys. 1955, 27, 412. [Google Scholar] [CrossRef]
- Boyd, M.E. Quantum Corrections to the Second Virial Coefficient for the Lennard-Jones (m-6) potential. J. Res. Natl. Bur. Stand. 1971, 75A, 57–60. [Google Scholar]
- Mamedov, B.A.; Somuncu, E. Evaluation of Quantum Corrections to Second Virial Coefficient with Lennard-Jones (12-6) Potential. J. Phys. Conf. Ser. 2016, 766, 012010. [Google Scholar] [CrossRef]
- Sadus, R.J. Second virial coefficient properties of the n–m Lennard-Jones/Mie potential. J. Chem. Phys. 2018, 149, 074504. [Google Scholar] [CrossRef]
- Sadus, R.J. Intermolecular potential-based equations of state from molecular simulation and second virial coefficient properties. J. Phys. Chem. B 2018, 122, 7757–7763. [Google Scholar] [CrossRef]
- Pohl, S.; Fingerhut, R.; Thol, M.; Vrabec, J.; Span, R. Equation of state for the Mie (λr, 6) fluid with a repulsive exponent from 11 to 13. J. Chem. Phys. 2023, 158, 084506. [Google Scholar] [CrossRef]
- González-Calderón, A.; Perera-Burgos, J.A.; Luis, D. Critical temperatures of real fluids from the extended law of corresponding states. AIP Adv. 2019, 9, 115217. [Google Scholar] [CrossRef]
- Bell, I.H. Effective Hardness of Interaction from Thermodynamics and Viscosity in Dilute Gases. J. Chem. Phys. 2020, 152, 164508. [Google Scholar] [CrossRef]
- Woodcock, L.V. Thermodynamic fluid equations-of-state. Entropy 2018, 20, 22. [Google Scholar] [CrossRef]
- Lopez de Haro, M.; Santos, A.; Yuste, S.B. Equation of state of four-and five-dimensional hard-hypersphere mixtures. Entropy 2020, 22, 469. [Google Scholar] [PubMed]
- Rodríguez García, B.; Piñeiro, M.M.; Pérez-Rodríguez, M. Influence of Lennard-Jones parameters in the temperature dependence of real gases diffusion through nanochannels. Nanomaterials 2023, 13, 1534. [Google Scholar]
- Czachorowski, P.; Przybytek, M.; Lesiuk, M.; Puchalski, M.; Jeziorski, B. Second virial coefficients for helium-4 and helium-3 from accurate relativistic interaction potential. Phys. Rev. A 2020, 102, 042810. [Google Scholar] [CrossRef]
- Hellmann, R. Cross Second Virial Coefficients of the H2O–H2 and H2S–H2 Systems from First-Principles. J. Chem. Eng. Data 2023, 68, 2212–2222. [Google Scholar] [CrossRef]
- Homes, S.; Heinen, M.; Vrabec, J. Influence of molecular anisotropy and quadrupolar moment on evaporation. Phys. Fluids 2023, 35, 052111. [Google Scholar] [CrossRef]
- Martínez-Lázaro, C.; González-Calderón, A.; Luis-Jiménez, D.P. Molecular models for O2 and N2 from the second virial coefficient. J. Mol. Liq. 2022, 360, 119419. [Google Scholar] [CrossRef]
- Cacan, H.; Mamedov, B.A. The comparative analytical evaluation of quantum corrections to the second virial coefficient with Morse potential and its applications to real systems. J. Chem. Thermodyn. 2019, 138, 147–150. [Google Scholar] [CrossRef]
- NIST Digital Library of Mathematical Functions. Chapter 12: Parabolic Cylinder Functions. 2025. Available online: https://dlmf.nist.gov/12 (accessed on 29 August 2025).
- NIST Digital Library of Mathematical Functions. Chapter 13: Confluent Hypergeometric (Kummer) Functions. 2025. Available online: https://dlmf.nist.gov/13 (accessed on 29 August 2025).
- Gil, A.; Ruiz-Antolín, D.; Segura, J.; Temme, N.M. Computation of the confluent hypergeometric function U(a,b,x) and its derivative for positive arguments. Numer. Algorithms 2023, 94, 669–679. [Google Scholar] [CrossRef]
- Uhlenbeck, G.E.; Beth, E. The quantum theory of the non-ideal gas I. Deviations from the classical theory. Physica 1936, 3, 729–745. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications: New York, NY, USA, 1964. [Google Scholar]
- Zaitsev, V.F.; Polyanin, A.D. Handbook of Exact Solutions for Ordinary Differential Equations; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Palma, G.; Raff, U. The one-dimensional harmonic oscillator in the presence of a dipole-like interaction. Am. J. Phys. 2003, 71, 247–249. [Google Scholar] [CrossRef]

| a | ||||
|---|---|---|---|---|
| From Equation | ||||
| (9) | 0 | |||
| (10) | 0 | 0 | ||
| (12) and (13) | indefinite | indefinite | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; González-Calderón, A.; Perera-Burgos, J.A.; Estrada, A.; Hernández-Anguiano, H.; Martínez-Lázaro, C.; Li, Y. Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient. Entropy 2025, 27, 1059. https://doi.org/10.3390/e27101059
Zhao Z, González-Calderón A, Perera-Burgos JA, Estrada A, Hernández-Anguiano H, Martínez-Lázaro C, Li Y. Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient. Entropy. 2025; 27(10):1059. https://doi.org/10.3390/e27101059
Chicago/Turabian StyleZhao, Zhe, Alfredo González-Calderón, Jorge Adrián Perera-Burgos, Antonio Estrada, Horacio Hernández-Anguiano, Celia Martínez-Lázaro, and Yanmei Li. 2025. "Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient" Entropy 27, no. 10: 1059. https://doi.org/10.3390/e27101059
APA StyleZhao, Z., González-Calderón, A., Perera-Burgos, J. A., Estrada, A., Hernández-Anguiano, H., Martínez-Lázaro, C., & Li, Y. (2025). Exact ODE Framework for Classical and Quantum Corrections for the Lennard-Jones Second Virial Coefficient. Entropy, 27(10), 1059. https://doi.org/10.3390/e27101059

