Genome Divergence Based on Entropic Segmentation of DNA
Abstract
1. Introduction
2. DNA Sequence Segmentation
- Given a DNA sequence of length N, , where , the algorithm slides a cursor along the sequence and computes at each position a divergence measure between the left and right subsequences. The Jensen–Shannon divergence (JSD) is commonly used for this purpose because it is well-suited to symbolic data [14,15]:
- Identify the position that maximizes the divergence between the left and right subsequences. The position is considered a candidate split point where the sequence may be divided, provided that the corresponding divergence, , is statistically significant.
- Next, assess the statistical significance of . This significance represents the probability that such a divergence could not be obtained from a random sequence , i.e., the probability that the null hypothesis of a homogeneous sequence does not hold. To this end, consider the cumulative distribution function:
- If the sequence is split, the same procedure is recursively applied to each resulting subsequence.
- The recursion terminates when no further significant change points are detected. The sequence is then said to be segmented at a significance level of . For example, if , we say that the sequence S is segmented at 0.95 or 95% significance level.
3. Compositional Landscape of the Genome
4. Segment Compositional Distance
5. Results
6. Discussion
7. Conclusions
8. Material and Methods
- Genome sequences used in this study were retrieved from the National Center for Biotechnology Information (NCBI) Genome database, a public repository for genome data https://www.ncbi.nlm.nih.gov/datasets/genome (accessed during March and April 2025). We navigated to the “Eukaryotes” section and then filtered by “Mammalia” to find links to the various available genome assemblies.
- Implementation details, source code, and pre-compiled binaries of the segmentation program are available at https://github.com/idedis/scc (accessed on 22 May 2025).
- The Python scripts, wrapper code for the scc executable, histograms, matrices of Segment Compositional Distance, and time divergence between species (retrieved from https://www.timetree.org (accessed on 22 May 2025)) are openly available at https://github.com/idedis/genome-divergence (accessed on 22 May 2025).
- All graphs in this article were produced using Python’s Matplotlib library (ver. 3.10.3). Phylogenetic trees were visualized with the Bio.Phylo module (ver. 1.8.0) from Biopython (ver. 1.85), which integrates with Matplotlib for tree rendering. Statistical calculations and clustering procedures were carried out using Python’s SciPy library (ver. 1.15.3).
- To perform multidimensional scaling (MDS) and evaluate phylogenetic signals in our data, we used the statistical computing environment R (ver. 4.3.4) along with several dedicated phylogenetic packages. Specifically, we employed the libraries ape (ver. 5.8.1), phytools (ver. 2.4.4), geiger (ver. 2.0.11), and phylobase (ver. 0.8.12) for phylogenetic data handling and manipulation. The phylosignal (ver. 1.3.1) package was used to compute various indices of phylogenetic signal, including Abouheif’s , Moran’s I, Blomberg’s K and , and Pagel’s , providing a quantitative assessment of trait similarity as a function of phylogenetic relatedness.
- To accelerate the segmentation and computation of genome histograms, we employed the application GNU Parallel [67] (ver. 20231122), which enabled parallel execution of tasks.
- The authors used AI-assisted tools (ChatGPT, OpenAI) to help refine the English in parts of the manuscript.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karlin, S.; Burge, C.; Campbell, A.M. Patterns of nucleotide composition in bacterial genomes. J. Mol. Biol. 1997, 271, 547–561. [Google Scholar] [CrossRef]
- Qi, J.; Wang, B.; Hao, B. Whole genome prokaryote phylogeny without sequence alignment: A K-string composition approach. J. Mol. Evol. 2004, 58, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, N.; de Souza, C.P.E.; Randhawa, G.S.; Hill, K.A.; Kari, L. Genome-wide Pervasiveness and Localized Variation of k-mer-based Genomic Signatures in Eukaryotes. bioRxiv 2025. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Stormo, G.D. DNA binding sites: Representation and discovery. Bioinformatics 2000, 16, 16–23. [Google Scholar] [CrossRef]
- Dick, G.J.; Andersson, S.G.E.; Baker, B.J.; Simmons, S.L.; Thomas, B.C.; Yelton, A.P.; Banfield, J.F. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009, 10, R85. [Google Scholar] [CrossRef]
- Galperin, M.Y. Sampling of microbial diversity by complete genomes. Environ. Microbiol. 2006, 8, 1313–1317. [Google Scholar] [CrossRef]
- Haubold, B. Alignment-free phylogenetics and population genetics. Briefings Bioinform. 2014, 15, 407–418. [Google Scholar] [CrossRef]
- Sandberg, R.; Winberg, G.; Branden, C.I.; Kaske, A.; Ernberg, I.; Coster, J. Comparative analysis of microbial genome signatures reveals major differences in gene content and species-specific features. Proc. Natl. Acad. Sci. USA 2001, 98, 3309–3314. [Google Scholar] [CrossRef]
- Pride, D.T.; Meinersmann, R.J.; Wassenaar, T.M.; Blaser, M.J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res. 2003, 13, 145–158. [Google Scholar] [CrossRef]
- Vinga, S.; Almeida, J. Alignment-free sequence comparison—A review. Bioinformatics 2003, 19, 513–523. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, R.; Díaz-Villanueva, W.; Arnau, V.; Moya, A. Genomic Signature in Evolutionary Biology: A Review. Biology 2023, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Bernaola-Galván, P.; Román-Roldán, R.; Oliver, J. Compositional segmentation and long-range fractal correlations in DNA sequences. Phys. Rev. E 1996, 53, 5181. [Google Scholar] [CrossRef]
- Grosse, I.; Bernaola-Galván, P.; Carpena, P.; Román-Roldán, R.; Oliver, J.L.; Stanley, H.E. Analysis of symbolic sequences using the Jensen-Shannon divergence. Phys. Rev. E 2002, 65, 041905. [Google Scholar] [CrossRef]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- Bernardi, G. Structural and Evolutionary Genomics: Natural Selection in Genome Evolution; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bernardi, G. The human genome: Organization and evolutionary history. Annu. Rev. Genet. 1995, 29, 445–476. [Google Scholar] [CrossRef]
- Elhaik, E.; Graur, D.; Josic, K. Comparative testing of DNA segmentation algorithms using benchmark simulations. Mol. Biol. Evol. 2010, 27, 1015–1024. [Google Scholar] [CrossRef]
- Carpena, P.; Bernaola-Galván, P.; Coronado, A.; Hackenberg, M.; Oliver, J. Identifying characteristic scales in the human genome. Phys. Rev. E 2007, 75, 032903. [Google Scholar] [CrossRef] [PubMed]
- Carpena, P.; Oliver, J.L.; Hackenberg, M.; Coronado, A.V.; Barturen, G.; Bernaola-Galván, P. High-level organization of isochores into gigantic superstructures in the human genome. Phys. Rev. E 2011, 83, 031908. [Google Scholar] [CrossRef]
- Larhammar, D.; Chatzidimitriou-Dreismann, C. Biological origins of long-range correlations and compositional variations in DNA. Nucleic Acids Res. 1993, 21, 5167–5170. [Google Scholar] [CrossRef]
- Stanley, H.; Buldyrev, S.; Goldberger, A.; Goldberger, Z.; Havlin, S.; Mantegna, R.; Ossadnik, S.; Peng, C.; Simons, M. Statistical mechanics in biology: How ubiquitous are long-range correlations? Phys. A Stat. Mech. Its Appl. 1994, 205, 214–253. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.; Havlin, S.; Simons, M.; Stanley, H.; Goldberger, A. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef]
- Oliver, J.; Román-Roldán, R.; Pérez, J.; Bernaola-Galván, P. SEGMENT: Identifying compositional domains in DNA sequences. Bioinformatics 1999, 15, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Bernaola-Galván, P.; Oliver, J.; Hackenberg, M.; Coronado, A.; Ivanov, P.; Carpena, P. Segmentation of time series with long-range fractal correlations. Eur. Phys. J. B 2012, 85, 211. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Lloyd, S. Information measures, effective complexity, and total information. Complexity 1996, 2, 44–52. [Google Scholar] [CrossRef]
- Román-Roldán, R.; Bernaola-Galván, P.; Oliver, J.L. Sequence compositional complexity of DNA through an entropic segmentation method. Phys. Rev. Lett. 1998, 80, 1344–1347. [Google Scholar] [CrossRef]
- Moya, A.; Oliver, J.L.; Verdú, M.; Delaye, L.; Arnau, V.; Bernaola-Galván, P.; de la Fuente, R.; Díaz, W.; Gómez-Martín, C.; González, F.M.; et al. Driven progressive evolution of genome sequence complexity in Cyanobacteria. Sci. Rep. 2020, 10, 19073. [Google Scholar] [CrossRef]
- Oliver, J.L.; Bernaola-Galván, P.; Carpena, P.; Perfectti, F.; Gómez-Martín, C.; Castiglione, S.; Raia, P.; Verdú, M.; Moya, A. Strong evidence for the evolution of decreasing compositional heterogeneity in SARS-CoV-2 genomes during the pandemic. Sci. Rep. 2025, 15, 12246. [Google Scholar] [CrossRef]
- Bellman, R. On the Approximation of Curves by Line Segments Using Dynamic Programming. Commun. ACM 1961, 4, 284–285. [Google Scholar] [CrossRef]
- Terzi, E.; Tsaparas, P. Efficient Algorithms for Sequence Segmentation. In Proceedings of the Sixth SIAM International Conference on Data Mining (SDM), Bethesda, MD, USA, 20–22 April 2006. [Google Scholar] [CrossRef]
- Haiminen, N.; Mannila, H.; Terzi, E. Comparing segmentations by applying randomization techniques. BMC Bioinform. 2007, 8, 171. [Google Scholar] [CrossRef]
- Bernardi, G. Isochores and the evolutionary genomics of vertebrates. Gene 2000, 241, 3–17. [Google Scholar] [CrossRef]
- Fedorov, A.; Saxonov, S.; Gilbert, W. Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res. 2002, 30, 1192–1197. [Google Scholar] [CrossRef]
- Li, W.; Holste, D. Spectral Analysis of Guanine and Cytosine Fluctuations of Mouse Genomic DNA. Fluct. Noise Lett. 2004, 4, L453–L464. [Google Scholar] [CrossRef]
- Yakovchuk, P.; Protozanova, E.; Frank-Kamenetskii, M.D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 2006, 34, 564–574. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- TimeTree. The Timescale of Life. Available online: http://www.timetree.org (accessed on 22 May 2025).
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef]
- Hedges, S.B.; Marin, J.; Suleski, M.; Paymer, M.; Kumar, S. Tree of Life Reveals Clock-like Speciation and Diversification. Mol. Biol. Evol. 2015, 32, 835–845. [Google Scholar] [CrossRef] [PubMed]
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The complete sequence of a human genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Scally, A.; Durbin, R. Revising the human mutation rate: Implications for understanding human evolution. Nat. Rev. Genet. 2012, 13, 745–753. [Google Scholar] [CrossRef]
- Keck, F.; Rimet, F.; Bouchez, A.; Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016, 6, 2774–2780. [Google Scholar] [CrossRef] [PubMed]
- Mair, P.; Groenen, P.J.F.; de Leeuw, J. More on Multidimensional Scaling and Unfolding in R: smacof Version 2. J. Stat. Softw. 2022, 102, 1–47. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H.K.; Ul Haq, M.I.; Bhatti, D.M.S. A Survey on Multidimensional Scaling. ACM Comput. Surv. 2018, 51, 1–25. [Google Scholar] [CrossRef]
- Abouheif, E. A Method for Testing the Assumption of Phylogenetic Independence in Comparative Data. Evol. Ecol. Res. 1999, 1, 895–909. [Google Scholar]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17. [Google Scholar] [CrossRef]
- Blomberg, S.P.; Garland, T. Tempo and Mode in Evolution: Phylogenetic Inertia, Adaptation and Comparative Methods. J. Evol. Biol. 2002, 15, 899–910. [Google Scholar] [CrossRef]
- Blomberg, S.; Garland, T.; Ives, A. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef]
- Pagel, M. Inferring the historical patterns of biological evolution. Nature 1999, 401, 877–884. [Google Scholar] [CrossRef]
- Bernaola-Galván, P.; Carpena, P.; Oliver, J.L. A Standalone Version of IsoFinder for the Computational Prediction of Isochores in Genome Sequences. arXiv 2008, arXiv:0806.1292. [Google Scholar] [CrossRef]
- Bernardi, G.; Olofsson, B.; Filipski, J.; Zerial, M.; Salinas, J.; Cuny, G.; Meunier-Rotival, M.; Rodier, F. The Mosaic Genome of Warm-Blooded Vertebrates. Science 1985, 228, 953–958. [Google Scholar] [CrossRef]
- Eyre-Walker, A.; Hurst, L.D. The Evolution of Isochores. Nat. Rev. Genet. 2001, 2, 549–555. [Google Scholar] [CrossRef]
- Oliver, J.L.; Bernaola-Galván, P.; Carpena, P.; Román-Roldán, R. Isochore Chromosome Maps of Eukaryotic Genomes. Gene 2001, 276, 47–56. [Google Scholar] [CrossRef]
- Oliver, J.L.; Carpena, P.; Hackenberg, M.; Bernaola-Galván, P. IsoFinder: Computational Prediction of Isochores in Genome Sequences. Nucleic Acids Res. 2004, 32, W287–W292. [Google Scholar] [CrossRef]
- Vinogradov, A.E. Isochores and Tissue-Specificity. Nucleic Acids Res. 2003, 31, 5212–5220. [Google Scholar] [CrossRef] [PubMed]
- Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. Evol. Genes Proteins 1965, 97, 97–166. [Google Scholar] [CrossRef]
- Bromham, L.; Penny, D. Molecular clocks in the genomic era. Biol. Direct 2009, 4, 1–16. [Google Scholar]
- Ho, S.Y.W.; Phillips, M.J.; Cooper, A.; Drummond, A.J. Time-dependent rates of molecular evolution. Mol. Ecol. 2005, 14, 163–171. [Google Scholar] [CrossRef]
- Pulquério, M.J.; Nichols, R.A. Exploring uncertainty in the calibration of the molecular clock. Biol. Lett. 2012, 8, 156–159. [Google Scholar] [CrossRef]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef] [PubMed]
- Duret, L.; Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genom. Hum. Genet. 2009, 10, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.I.; Soto, M.A.; Spotorno, A.E. Similarities and differences among the chromosomes of the wild guinea pig Cavia tschudii and the domestic guinea pig Cavia porcellus (Rodentia, Caviidae). Comp. Cytogenet. 2014, 8, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.A.; Perelman, P.L.; Trifonov, V.A.; Serdyukova, N.A.; Li, T.; Fu, B.; O’Brien, P.C.M.; Ng, B.L.; Nie, W.; Liehr, T.; et al. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans. PLoS ONE 2015, 10, e0130151. [Google Scholar] [CrossRef] [PubMed]
- Tange, O. GNU Parallel 2018; Lulu.com: Morrisville, NC, USA, 2018. [Google Scholar]
Primates | Carnivores | Rodents |
---|---|---|
Callithrix jacchus | Canis lupus | Cavia porcellus |
Carlito syrichta | Felis catus | Cricetulus griseus |
Chlorocebus sabaeus | Mustela putorius | Dipodomys ordii |
Gorilla gorilla | Neomonachus schauinslandi | Mus musculus |
Homo sapiens | Rattus norvegicus | |
Macaca fascicularis | ||
Macaca mulatta | ||
Nasalis larvatus | ||
Nomascus leucogenys | ||
Otolemur garnettii | ||
Pan paniscus | ||
Pan troglodytes | ||
Papio anubis | ||
Pongo abelii |
Scientific Name (Common Name) | (My) | Order |
---|---|---|
Balaenoptera acutorostrata (Minke whale) | 94 | Cetartiodactyla |
Bison bison (American bison) | 94 | Cetartiodactyla |
Callithrix jacchus (Common marmoset) | 42 | Primates |
Canis lupus (Gray wolf) | 94 | Carnivora |
Carlito syrichta (Philippine tarsier) | 68 | Primates |
Cavia porcellus (Guinea pig) | 87 | Rodentia |
Chlorocebus sabaeus (Green monkey) | 28 | Primates |
Cricetulus griseus (Chinese hamster) | 87 | Rodentia |
Dasypus novemcinctus (Nine-banded armadillo) | 99 | Cingulata |
Dipodomys ordii (Ord’s kangaroo rat) | 87 | Rodentia |
Equus caballus (Horse) | 94 | Perissodactyla |
Erinaceus europaeus (European hedgehog) | 94 | Eulipotyphla |
Felis catus (Cat) | 94 | Carnivora |
Galeopterus variegatus (Sunda flying lemur) | 79 | Dermoptera |
Gorilla gorilla (Gorilla) | 8 | Primates |
Loxodonta africana (African elephant) | 99 | Proboscidea |
Macaca fascicularis (Crab-eating macaque) | 28 | Primates |
Macaca mulatta (Rhesus macaque) | 28 | Primates |
Monodelphis domestica (Gray short-tailed opossum) | 160 | Didelphimorphia |
Mus musculus (House mouse) | 87 | Rodentia |
Mustela putorius (Ferret) | 94 | Carnivora |
Myotis lucifugus (Little brown bat) | 94 | Chiroptera |
Nasalis larvatus (Proboscis monkey) | 28 | Primates |
Neomonachus schauinslandi (Hawaiian monk seal) | 94 | Carnivora |
Nomascus leucogenys (Northern white-cheeked gibbon) | 19 | Primates |
Ochotona princeps (American pika) | 87 | Lagomorpha |
Ornithorhynchus anatinus (Platypus) | 180 | Monotremata |
Otolemur garnettii (Small-eared galago) | 73 | Primates |
Ovis orientalis (Mouflon) | 94 | Cetartiodactyla |
Pan paniscus (Bonobo) | 6 | Primates |
Pan troglodytes (Chimpanzee) | 6 | Primates |
Papio anubis (Olive baboon) | 28 | Primates |
Pongo abelii (Sumatran orangutan) | 15 | Primates |
Procavia capensis (Rock hyrax) | 99 | Hyracoidea |
Rattus norvegicus (Norway rat) | 87 | Rodentia |
Sarcophilus harrisii (Tasmanian devil) | 160 | Dasyuromorphia |
Sorex araneus (Common shrew) | 94 | Eulipotyphla |
Sus scrofa (Pig) | 94 | Cetartiodactyla |
Tupaia glis (Tree shrew) | 84 | Scandentia |
Tursiops truncatus (Bottlenose dolphin) | 94 | Cetartiodactyla |
Vicugna pacos (Alpaca) | 94 | Cetartiodactyla |
# of Bins | Abouheif’s | Moran’s I | Blomberg K | Blomberg | Pagel’s | |
---|---|---|---|---|---|---|
0.5774 *** | NS | 1.7055 *** | 1.6440 *** | 1.0416 *** | ||
50 | 0.5751 *** | 0.0848 *** | 2.0579 *** | 1.8757 *** | 1.0420 *** | |
0.2295 * | NS | 1.3052 *** | 1.2795 *** | 1.0418 *** | ||
0.5779 *** | NS | 1.7018 *** | 1.6450 *** | 1.0416 *** | ||
100 | 0.5903 *** | 0.0906 *** | 2.1290 *** | 1.9236 *** | 1.0420 *** | |
0.2448 ** | NS | 1.3141 *** | 1.2971 *** | 1.0418 *** | ||
0.5799 *** | 0.0073 * | 1.7010 *** | 1.6473 *** | 1.0416 *** | ||
200 | 0.6025 *** | 0.0952 *** | 2.1831 *** | 1.9656 *** | 1.0420 *** | |
0.2543 * | NS | 1.3192 *** | 1.3073 *** | 1.0418 *** | ||
0.5831 *** | NS | 1.6993 *** | 1.6500 *** | 1.0416 *** | ||
500 | 0.6213 *** | 0.0988 *** | 2.2255 *** | 2.0161 *** | 1.0420 *** | |
0.2730 ** | 0.0098 * | 1.3332 *** | 1.3266 *** | 1.0418 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernaola-Galván, P.A.; Carpena, P.; Gómez-Martín, C.; Oliver, J.L. Genome Divergence Based on Entropic Segmentation of DNA. Entropy 2025, 27, 1019. https://doi.org/10.3390/e27101019
Bernaola-Galván PA, Carpena P, Gómez-Martín C, Oliver JL. Genome Divergence Based on Entropic Segmentation of DNA. Entropy. 2025; 27(10):1019. https://doi.org/10.3390/e27101019
Chicago/Turabian StyleBernaola-Galván, Pedro A., Pedro Carpena, Cristina Gómez-Martín, and José L. Oliver. 2025. "Genome Divergence Based on Entropic Segmentation of DNA" Entropy 27, no. 10: 1019. https://doi.org/10.3390/e27101019
APA StyleBernaola-Galván, P. A., Carpena, P., Gómez-Martín, C., & Oliver, J. L. (2025). Genome Divergence Based on Entropic Segmentation of DNA. Entropy, 27(10), 1019. https://doi.org/10.3390/e27101019