Improvement of Three-Party Semi-Quantum Protocol for Deterministic Secure Quantum Dialogue Based on GHZ States
Abstract
1. Introduction
- (1)
- We identify a critical security flaw in the original ZZL-SQD protocol—specifically, its inability to defend against attacks launched by dishonest participants—and provide a detailed analysis accompanied by concrete examples to illustrate this vulnerability.
- (2)
- To address potential attacks from dishonest participants, we propose an improved version of the ZZL-SQD protocol and conduct a comprehensive security analysis, demonstrating that the revised scheme is robust against various external and internal attacks and effectively prevents information leakage.
- (3)
- We further evaluate the quantum communication efficiency of the proposed protocol. The results demonstrate a notable improvement over the original ZZL-SQD protocol, thereby enhancing its overall practicality and applicability.
2. Description of the ZZL-SQD Protocol
- (1)
- M: Measure the decoy photon using the Z-basis and prepare a photon in the same state as the measurement result, then send it back to Alice.
- (2)
- R: Directly reflect the photon to Alice without making any disturbance.
- (1)
- If () is 1, Bob (Charlie) prepares a state in the Z-basis that is the opposite of the measurement result of the corresponding particle ().
- (2)
- If () is 0, Bob (Charlie) does nothing.
- (1)
- MM: Measure the decoy photon using the Z-basis and prepare a photon in the same state as the measurement result.
- (2)
- RR: Do nothing; Once all decoy photons have been processed, Bob (Charlie) reorders all the particles in the sequence () to obtain a new sequence (). Bob and Charlie then send and to Alice, respectively.
3. Analysis and Improvement of ZZL-SQD Protocol
3.1. Security Analysis of ZZL-SQD Protocol Against the Dishonest Participant Attack
3.2. Improvement of ZZL-SQD Protocol
4. Security Analysis
4.1. External Attack
4.1.1. Intercept–Prepare–Resend Attack
4.1.2. Intercept–Measure–Resend Attack
4.1.3. Entangle–Measurement Attack
4.1.4. Trojan Horse Attack
4.2. Dishonest Participant Attack
4.3. Information Leakage
5. Efficiency Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, B.A. Quantum dialogue. Phys. Lett. A 2004, 328, 6–10. [Google Scholar] [CrossRef]
- Man, Z.X.; Zhang, Z.J.; Li, Y. Quantum dialogue revisited. Chin. Phys. Lett. 2005, 22, 22. [Google Scholar] [CrossRef]
- Man, Z.X.; Xia, Y.J. Controlled Bidirectional Quantum Direct Communication by Using a GHZ State. Chin. Phys. Lett. 2006, 23, 1680. [Google Scholar] [CrossRef]
- Xia, Y.; Fu, C.B.; Zhang, S.; Hong, S.K.; Yeon, K.H.; Um, C.I. Quantum dialogue by using the GHZ state. arXiv 2006, arXiv:quant-ph/0601127. [Google Scholar]
- Ji, X.; Zhang, S. Secure quantum dialogue based on single-photon. Chin. Phys. B 2006, 15, 1418–1420. [Google Scholar]
- Yang, Y.; Wen, Q. Quasi-secure quantum dialogue using single photons. Sci. China Phys. Mech. Astron. 2007, 50, 558–562. [Google Scholar] [CrossRef]
- Gao, F.; Guo, F.; Wen, Q.; Zhu, F. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Phys. Mech. Astron. 2008, 51, 559–566. [Google Scholar] [CrossRef]
- Gao, G. Two quantum dialogue protocols without information leakage. Opt. Commun. 2010, 283, 2288–2293. [Google Scholar] [CrossRef]
- Lang, Y.-F.; Cai, C.-C. Quantum dialogue with one qubit to represent two bits. Quantum Inf. Process. 2024, 23, 396. [Google Scholar] [CrossRef]
- Li, Z.Z.; He, R.Z.; Zhang, Z.Z.; Ding, H.Y.; Wang, D.F. Semi-quantum dialogue protocol based on four-particle Ω state. Chin. J. Phys. 2025, 95, 348–357. [Google Scholar] [CrossRef]
- Yan, X.; Jie, S.; Jing, N.; He-Shan, S. Controlled Secure Quantum Dialogue Using a Pure Entangled GHZ States. Commun. Theor. Phys. 2007, 48, 841. [Google Scholar] [CrossRef]
- Ai, Z.; Yin, A. Controlled and authenticated quantum dialogue protocol based on Grover’s algorithm. Int. J. Theor. Phys. 2022, 61, 261. [Google Scholar] [CrossRef]
- Liu, B.-X.; Liang, X.-Q. Novel controlled quantum dialogue protocols without information leakage. Int. J. Theor. Phys. 2022, 61, 51. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, H. An Authenticated Controlled Quantum Dialogue Protocol Using Double-Linked GHZ-Like States in Cross-domain Setting. Int. J. Theor. Phys. 2023, 62, 211. [Google Scholar] [CrossRef]
- Yu, Z.-B.; Gong, L.-H.; Zhu, Q.-B.; Cheng, S.; Zhou, N.-R. Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 2016, 55, 3147–3155. [Google Scholar] [CrossRef]
- Cao, G.; Jiang, M. Multi-party quantum dialogue protocol based on multi-particle GHZ states. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: New York, NJ, USA, 2017; pp. 1614–1618. [Google Scholar]
- Gong, L.; Tian, C.; Li, J.; Zou, X. Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 2018, 17, 331. [Google Scholar] [CrossRef]
- Boyer, M.; Kenigsberg, D.; Mor, T. Quantum key distribution with classical Bob. In Proceedings of the 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), Guadeloupe, Franch, 2–6 January 2007; IEEE: New York, NJ, USA, 2007; p. 10. [Google Scholar]
- Dong, S.; Mi, S.; Hou, Q.; Huang, Y.; Wang, J.; Yu, Y.; Wei, Z.; Zhang, Z.; Fang, J. Decoy state semi-quantum key distribution. EPJ Quantum Technol. 2023, 10, 18. [Google Scholar] [CrossRef]
- Ye, C.-Q.; Li, J.; Chen, X.-B.; Hou, Y.; Wang, Z. Security and application of semi-quantum key distribution protocol for users with different quantum capabilities. EPJ Quantum Technol. 2023, 10, 21. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, N.; Chang, J.; Li, J. Three-party semi-quantum secure direct communication based on two communication models. Phys. Scr. 2024, 99, 095110. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhou, R.-G.; Xu, W.-S. Robust semi-quantum secure direct communication based on multi-particle system. Quantum Inf. Process. 2025, 24, 169. [Google Scholar] [CrossRef]
- He, F.; Xin, X.; Li, C.; Li, F. Security analysis of the semi-quantum secret-sharing protocol of specific bits and its improvement. Quantum Inf. Process. 2024, 23, 51. [Google Scholar] [CrossRef]
- Xin, X.; He, F.; Li, C.; Li, F. Multiparty semi-quantum secret sharing protocol based on single photon sequence and permutation. Mod. Phys. Lett. A 2024, 39, 2450084. [Google Scholar] [CrossRef]
- Shukla, C.; Thapliyal, K.; Pathak, A. Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 2017, 16, 295. [Google Scholar] [CrossRef]
- Pan, H.-M. Semi-quantum dialogue with Bell entangled states. Int. J. Theor. Phys. 2020, 59, 1364–1371. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Xin, X.-J.; Li, P.; Li, C.-Y. Semi-Quantum Dialogue with d-Dimensional Single Particles. Int. J. Theor. Phys. 2025, 64, 133. [Google Scholar] [CrossRef]
- Xu, L.-C.; Chen, H.-Y.; Zhou, N.-R.; Gong, L.-H. Multi-party semi-quantum secure direct communication protocol with cluster states. Int. J. Theor. Phys. 2020, 59, 2175–2186. [Google Scholar] [CrossRef]
- Zhou, R.-G.; Zhang, X.; Li, F. Three-party semi-quantum protocol for deterministic secure quantum dialogue based on GHZ states. Quantum Inf. Process. 2021, 20, 153. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, M.; Song, X. Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel. Quantum Inf. Process. 2018, 17, 342. [Google Scholar] [CrossRef]
- Zhao, M.-N.; Zhou, R.-G.; Feng, Y.-H. Multi-Party Controlled Semi-Quantum Dialogue Protocol Based on Hyperentangled Bell States. Entropy 2025, 27, 666. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Qin, S.J.; Wen, Q.Y.; Zhu, F.C. A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 2007, 7, 329–334. [Google Scholar] [CrossRef]
- Cai, Q.-Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 2006, 351, 23–25. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef]
- Cabello, A. Quantum key distribution in the Holevo Limit. Phys. Rev. Lett. 2000, 85, 5635. [Google Scholar] [CrossRef]
[15] | [16] | [28] | ZZL-SQD Protocol | This Work | |
---|---|---|---|---|---|
Protocol Type | Fully Quantum | Fully Quantum | Semi-Quantum | Semi-Quantum | Semi-Quantum |
Communication Pattern | Symmetric | Asymmetric | Asymmetric | Symmetric | Symmetric |
Quantum Resources | Continuous variable GHZ states | 4-dimensional 4-particle entangled GHZ states | Four-particle cluster states | GHZ states | GHZ states |
Analysis dishonest participant attack | No | Yes | Yes | No | Yes |
bs | 6n | 6n | 4n | 6n | 6n |
qt | 3n | 8n | 8n | 3n | 3n |
qs | 9n | 0 | 2n | 5n | 4n |
η | 66.7% | 75% | 20% | 75% | 85.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, X.; Xin, X.-J.; Li, C.-Y.; Gong, L. Improvement of Three-Party Semi-Quantum Protocol for Deterministic Secure Quantum Dialogue Based on GHZ States. Entropy 2025, 27, 1002. https://doi.org/10.3390/e27101002
Zhang L, Liu X, Xin X-J, Li C-Y, Gong L. Improvement of Three-Party Semi-Quantum Protocol for Deterministic Secure Quantum Dialogue Based on GHZ States. Entropy. 2025; 27(10):1002. https://doi.org/10.3390/e27101002
Chicago/Turabian StyleZhang, Ling, Xun Liu, Xiang-Jun Xin, Chao-Yang Li, and Li Gong. 2025. "Improvement of Three-Party Semi-Quantum Protocol for Deterministic Secure Quantum Dialogue Based on GHZ States" Entropy 27, no. 10: 1002. https://doi.org/10.3390/e27101002
APA StyleZhang, L., Liu, X., Xin, X.-J., Li, C.-Y., & Gong, L. (2025). Improvement of Three-Party Semi-Quantum Protocol for Deterministic Secure Quantum Dialogue Based on GHZ States. Entropy, 27(10), 1002. https://doi.org/10.3390/e27101002