Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions
Abstract
:1. Introduction
- sets built by multiples of mutually orthogonal vectors, where at least one of the multiples contains less than n vectors, with n being the dimension of space in which the sets reside [29]; or
1.1. General Hypergraphs
1.2. MMP Hypergraphs
- 1.
- Every vertex belongs to at least one hyperedge;
- 2.
- Every hyperedge contains at least 2 and at most n vertices;
- 3.
- No hyperedge shares only one vertex with another hyperedge;
- 4.
- Hyperedges may intersect with each other in at most vertices;
- 5.
- Numerically, an MMPH is a string of ASCII characters corresponding to vertices and organized in substrings separated by commas (“,”), corresponding to hyperedges; the string ends with a period (“.”); one uses 90 characters: 1...9 A...Z a...z!"#$%&’( ) * - / : ; < = > ? @ [ ∖ ] ^ _ ‘ { | } ∼; when exhausted, one reuses them prefixed by ‘+’ and then by ‘++’, etc.; there is no limit on their length;
- 6.
- Graphically, vertices are represented as dots and hyperedges as (curved) lines passing through them.
1.3. Non-Binary and Binary MMPHs
- (i)
- No two vertices within any of its hyperedges may both be assigned the value 1;
- (ii)
- In any of its hyperedges, not all vertices may be assigned the value 0.
1.4. Hypergraph Structural Discriminators
1.5. Coordinatization
- (i)
- No two vertices within any of its hyperedges may both be assigned the value 1;
- (ii)
- In any of its hyperedges, not all vertices may be assigned the value 0.
2. Results
2.1. Kochen–Specker vs. Non-Kochen–Specker MMPHs
2.2. Generation of NBMMPHs
- M3: Automated dropping of vertices contained in single hyperedges (multiplicity ) of either NBMMPHs or BMMPHs and the possible subsequent stripping of their hyperedges [3]. The obtained smaller MMPHs are often NBMMPH, although never KS.
- M4: Automated random addition of hyperedges to MMPHs to obtain larger ones, which then generates smaller KS MMPHs through the random removal of hyperedges again.
- M5: Deleting vertices in either an NBMMPH or a BMMPH until a non-KS NBMMPH is reached, if any.
- M8: Generation of KS MMPHs in higher dimensions by dimensional upscaling, whose complexity does not scale with the dimension [47].
2.3. NBMMPHs vs. Operators and States—The Inequalities
- 1.
- vertex ‘v’ might share hyperedges;
- 2.
- measurements are performed on n vertices contained in hyperedges ‘j’, ;
- 3.
- the outcomes of measurements carried out on particular vertices in a particular hyperedge j might be dropped out of consideration, leaving us with vertices in the hyperedge j;
- 4.
- the probability of obtaining measurement data for each vertex within a hyperedge, after discarding the data for dropped vertices, is ;
- 5.
- the sum of all probabilities is, according to Equation (7), equal to the size of the hypergraph, i.e., to the number of its hyperedges l.
2.4. Generations of KS and Non-KS MMPHs in Dimensions 3 to 32
2.4.1. 3-dim MMPHs
2.4.2. 4-dim MMPHs
2.4.3. 5- to 8-dim MMPHs
2.4.4. 9- to 32-dim MMPHs
2.5. Applications
2.5.1. Larger Alphabet
- Alice picks up n-dim MMPHs and sends outputs from the gates/hyperedges of the chosen MMPHs to Bob in blocks; she can repeat sending from the same MMPHs or pick up new ones;
- Bob stores Alice’s sending in quantum memory;
- Alice informs Bob about which sending belonged to which hyperedge and from which MMPH over a classical channel, with a delay;
- Bob reads off each Alice’s sendings and sends them back to her, scrambled, over the quantum channel; scrambling codes transform Bob’s sendings into his messages but they are still undisclosed to Alice;
- Alice stores Bob’s sendings in quantum memory;
- Bob informs Alice of the scrambling code over a classical channel, with a delay;
- After an agreed number of exchanged blocks, they can transmit some messages over a classical channel to check whether Eve is in the quantum channel;
- After Alice has correlated the reflected sendings with the original ones with the help of Bob’s code, she learns how to measure each of them from the quantum memory and read off Bob’s message.
- 1 = (0,0,0,1), 8 = (0,0,1,1), 9 = (0,0,1,−1), H = (0,0,1,i), I = (0,0,i,1), 2 = (0,1,0,0), J = (0,i,0,1), 5 = (0,1,i,0), 6 = (0,i,1,0), 7 = (1,0,0,0), M = (1,0,0,i), 3 = (1,0,i,0), 4 = (i,0,1,0), F = (1,1,i,i), C = (1,1,i,−i), D = (1,1,−i,i), G = (i,i,1,1), E = (1,−1,0,0), L = (1,−1,i,−i), K = (−1,1,i,i), A = (1,i,0,0), B = (i,1,0,0)
2.5.2. Oblivious Communication Protocol
2.5.3. Generalized Hadamard Matrices
2.5.4. Stabilizer Operations
3. Discussion
4. Methods
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MMPH | McKay–Megill–Pavičić hypergraph (Definition 2) |
NBMMPH | Non-binary McKay–Megill–Pavičić hypergraph (Definition 3) |
BMMPH | Binary McKay–Megill–Pavičić hypergraph (Definition 4) |
KS | Kochen–Specker (Definition 15) |
non-KS | Non-Kochen–Specker (Definition 16) |
M1, M2, …, M8 | Methods 1, 2, …, 8 (Section 2.2) |
Appendix A. ASCII Strings of Non-KS MMPH Classes and Their Masters and Supermasters
Appendix A.1. 3-dim MMPHs
Appendix A.2. 4-dim MMPHs
New 4-dim MMPH Masters, Their Coordinatizations, and Their Distributions
- 9 (number of hyperedges, l) 18 (number of vertices, k) (1) (number of MMPHs)
- 11 20 (2), 21 (2), 22 (4)
- 13 22 (2), 23 (6), 24 (33), 25 (40), 26 (35)
- 15 24 (1), 25 (3), 26 (52), 27 (208), 28 (573), 29 (542), 30 (265)
- 16 29 (1), 30 (7)
- 17 28 (4), 29 (103), 30 (860), 31 (2832), 32 (5011), 33 (3876), 34 (1325), 35 (1)
- 18 31 (7), 32 (11), 33 (25), 34 (15), 35 (19), 36 (5), 37 (2)
- 19 31 (2), 32 (112), 33 (724), 34 (2880), 35 (6701), 36 (9045), 37 (6139), 38 (1851), 39 (1)
- 20 34 (7), 35 (27), 36 (69), 37 (49), 38 (49), 39 (20), 40 (10), 41 (6)
- 21 34 (4), 35 (30), 36 (304), 37 (1318), 38 (3428), 39 (5807), 40 (6241), 41 (357), 42 (844), 43 (1)
- 22 37 (10), 38 (33), 39 (70), 40 (86), 41 (65), 42 (43), 43 (16), 44 (4), 45 (2)
- 23 38 (26), 39 (163), 40 (693), 41 (1617), 42 (3098), 43 (3749), 44 (3098), 45 (130), 46 (277), 47 (1)
- 24 39 (1), 40 (13), 41 (30), 42 (73), 43 (81), 44 (88), 45 (46), 46 (29), 47 (8), 48 (2), 49 (1)
- 25 40 (4), 41 (16), 42 (122), 43 (406), 44 (1005), 45 (1597), 46 (2127), 47 (175), 48 (1109), 49 (387), 50 (70), 51 (2)
- 26 41 (1), 42 (5), 43 (27), 44 (55), 45 (104), 46 (97), 47 (77), 48 (51), 49 (23), 50 (7), 52 (3)
- 27 42 (1), 43 (4), 44 (23), 45 (102), 46 (271), 47 (572), 48 (883), 49 (111), 50 (937), 51 (643), 52 (317), 53 (85), 54 (12)
- 28 44 (1), 45 (20), 46 (47), 47 (77), 48 (104), 49 (114), 50 (92), 51 (47), 52 (24), 53 (9), 54 (3), 55 (2) 29 45 (1), 46 (9), 47 (40), 48 (118), 49 (230), 50 (349), 51 (506), 52 (53), 53 (462), 54 (314), 55 (149), 56 (83), 57 (18), 58 (2)
- 30 46 (1), 47 (10), 48 (33), 49 (79), 50 (139), 51 (157), 52 (141), 53 (97), 54 (44), 55 (20), 56 (7), 57 (1), 58 (3)
- 31 48 (2), 49 (35), 50 (86), 51 (157), 52 (250), 53 (272), 54 (297), 55 (26), 56 (206), 57 (148), 58 (69), 59 (35), 60 (13), 61 (1)
- 32 49 (4), 50 (22), 51 (75), 52 (149), 53 (193), 54 (196), 55 (126), 56 (69), 57 (37), 58 (17), 59 (12)
- 33 50 (5), 51 (24), 52 (67), 53 (146), 54 (226), 55 (219), 56 (196), 57 (15), 58 (126), 59 (85), 60 (59), 61 (25), 62 (10), 63 (1), 64 (2)
- 34 51 (4), 52 (18), 53 (54), 54 (130), 55 (220), 56 (200), 57 (188), 58 (12), 59 (64), 60 (31), 61 (9), 62 (2), 63 (1)
- 35 53 (8), 54 (41), 55 (118), 56 (184), 57 (240), 58 (219), 59 (158), 60 (11) 61 (67), 62 (33), 63 (18), 64 (7), 65 (1), 66 (4), 67 (1)
- 36 54 (5), 55 (26), 56 (91), 57 (194), 58 (232), 59 (226), 60 (166), 61 (89), 62 (39), 63 (23), 64 (4)
- 37 55 (1), 56 (23), 57 (71), 58 (155), 59 (226), 60 (248), 61 (185), 62 (10), 63 (58), 64 (22), 65 (15), 66 (7), 67 (3), 68 (1)
- 38 56 (2), 57 (14), 58 (48), 59 (143), 60 (194), 61 (221), 62 (192), 63 (10), 64 (62), 65 (22), 66 (5), 67 (1)
- 39 57 (3), 58 (10), 59 (35), 60 (84), 61 (174), 62 (210), 63 (156), 64 (13), 65 (60), 66 (29), 67 (8), 68 (5), 69 (2), 70 (2)
- 40 58 (2), 59 (2), 60 (18), 61 (55), 62 (140), 63 (167), 64 (139), 65 (10), 66 (64), 67 (20), 68 (6), 69 (11), 70 (1)
- 41 60 (2), 61 (7), 62 (34), 63 (89), 64 (125), 65 (116), 66 (101), 67 (67), 68 (34), 69 (13), 70 (3), 73 (1) 42 62 (3), 63 (19), 64 (53), 65 (99), 66 (107), 67 (91), 68 (60), 69 (29), 70 (9), 72 (1)
- 43 63 (1), 64 (13), 65 (27), 66 (55), 67 (86), 68 (82), 69 (43), 70 (25), 71 (7), 72 (3), 73 (3), 75 (1)
- 44 64 (1), 65 (4), 66 (9), 67 (42), 68 (46), 69 (51), 70 (38), 71 (23), 72 (10), 73 (6), 75 (1)
- 45 66 (1), 67 (4), 68 (14), 69 (18), 70 (41), 71 (29), 72 (15), 73 (7), 74 (2)
- 46 66 (1), 68 (3), 69 (4), 70 (10), 71 (24), 72 (20), 73 (8), 74 (6), 76 (2)
- 47 69 (1), 70 (6), 71 (10), 72 (13), 73 (6), 74 (7), 75 (2), 76 (2)
- 48 71 (2), 72 (5), 73 (11), 74 (5), 75 (2), 76 (2), 77 (1), 78 (1), 79 (1)
- 49 74 (7), 75 (3), 76 (3)
- 50 73 (1), 76 (1), 77 (1), 81 (1)
- 51 75 (1)
- 52 76 (1)
- 111137 non-isomorphic critical KS MMPHs.
Appendix A.3. 5-dim MMPHs
Appendix A.4. 6-dim MMPHs
Appendix A.5. 8-dim MMPHs
References
- Zimba, J.; Penrose, R. On Bell Non-Locality without Probabilities: More Curious Geometry. Stud. Hist. Phil. Sci. 1993, 24, 697–720. [Google Scholar] [CrossRef]
- Matsuno, S. The Construction of Kochen–Specker Noncolourable Sets in Higher-Dimensional Space from Corresponding Sets in Lower Dimension: Modification of Cabello, Estebaranz and García-Alcaine’s Method. J. Phys. A 2007, 40, 9507–9513. [Google Scholar] [CrossRef]
- Pavičić, M. Quantum Contextuality. Quantum 2023, 7, 953. [Google Scholar] [CrossRef]
- Pavičić, M. Non-Kochen-Specker Contextuality. Entropy 2023, 25, 1117. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Żukowski, M.; Weinfurter, H.; Zeilinger, A. Feasible Kochen-Specker Experiment with Single Particles. Phys. Rev. Lett. 2000, 85, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Michler, M.; Weinfurter, H.; Żukowski, M. Experiments towards Falsification of Noncontextual Hidden Variables. Phys. Rev. Lett. 2000, 84, 5457–5461. [Google Scholar] [CrossRef]
- Amselem, E.; Rådmark, M.; Bourennane, M.; Cabello, A. State-Independent Quantum Contextuality with Single Photons. Phys. Rev. Lett. 2009, 103, 160405. [Google Scholar] [CrossRef]
- Liu, B.H.; Huang, Y.F.; Gong, Y.X.; Sun, F.W.; Zhang, Y.S.; Li, C.F.; Guo, G.C. Experimental Demonstration of Quantum Contextuality with Nonentangled Photons. Phys. Rev. A 2009, 80, 044101. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Herbauts, I.; Amselem, E.; Nagali, E.; Bourennane, M.; Sciarrino, F.; Cabello, A. Experimental Implementation of a Kochen-Specker Set of Quantum Tests. Phys. Rev. X 2013, 3, 011012. [Google Scholar] [CrossRef]
- Huang, Y.F.; Li, C.F.; Zhang, Y.S.; Pan, J.W.; Guo, G.C. Experimental Test of the Kochen-Specker Theorem with Single Photons. Phys. Rev. Lett. 2003, 90, 250401. [Google Scholar] [CrossRef]
- Lapkiewicz, R.; Li, P.; Schaeff, C.; Langford, N.K.; Ramelow, S.; Wieśniak, M.; Zeilinger, A. Experimental Non-Classicality of an Indivisible Quantum System. Nat. 2011, 474, 490–493. [Google Scholar] [CrossRef]
- Zu, C.; Wang, Y.X.; Deng, D.L.; Chang, X.Y.; Liu, K.; Hou, P.Y.; Yang, H.X.; Duan, L.M. State-Independent Experimental Test of Quantum Contextuality in an Indivisible System. Phys. Rev. Lett. 2012, 109, 150401. [Google Scholar] [CrossRef]
- Cañas, G.; Etcheverry, S.; Gómez, E.S.; Saavedra, C.; Xavier, G.B.; Lima, G.; Cabello, A. Experimental Implementation of an Eight-Dimensional Kochen-Specker Set and Observation of Its Connection with the Greenberger-Horne-Zeilinger Theorem. Phys. Rev. A 2014, 90, 012119. [Google Scholar] [CrossRef]
- Cañas, G.; Arias, M.; Etcheverry, S.; Gómez, E.S.; Cabello, A.; Saavedra, C.; Xavier, G.B.; Lima, G. Applying the Simplest Kochen-Specker Set for Quantum Information Processing. Phys. Rev. Lett. 2014, 113, 090404. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Zhang, X.; Li, J.; Zhang, Y.; Sanders, B.C.; Xue, P. Realization of the Contextuality-Nonlocality Tradeoff with a Qubit-Qutrit Photon Pair. Phys. Rev. Lett. 2016, 116, 090401. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zeng1, Q.; Song, X.; Zhang, X. Experimental Contextuality in Classical Light. Sci. Rep. 2017, 7, 44467. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zeng, Q.; Zhang, X.; Chen, T.; Zhang, X. State-Independent Contextuality in Classical Light. Sci. Rep. 2019, 9, 17038. [Google Scholar] [CrossRef] [PubMed]
- Frustaglia, D.; Baltanás, J.P.; Velázquez-Ahumada, M.C.; Fernández-Prieto, A.; Lujambio, A.; Losada, V.; Freire, M.J.; Cabello, A. Classical Physics and the Bounds of Quantum Correlations. Phys. Rev. Lett. 2016, 116, 250404. [Google Scholar] [CrossRef]
- Zhang, A.; Xu, H.; Xie, J.; Zhang, H.; Smith, B.J.; Kim, M.S.; Zhang, L. Experimental Test of Contextuality in Quantum and Classical Systems. Phys. Rev. Lett. 2004, 122, 080401. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Loidl, R.; Badurek, G.; Baron, M.; Rauch, H. Quantum Contextuality in a Single-Neutron Optical Experiment. Phys. Rev. Lett. 2006, 97, 230401. [Google Scholar] [CrossRef] [PubMed]
- Cabello, A.; Filipp, S.; Rauch, H.; Hasegawa, Y. Proposed Experiment for Testing Quantum Contextuality with Neutrons. Phys. Rev. Lett. 2008, 100, 130404. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, H.; Klepp, J.; Schmitzer, C.; Sponar, S.; Cabello, A.; Rauch, H.; Hasegawa, Y. Experimental Test of Quantum Contextuality in Neutron Interferometry. Phys. Rev. Lett. 2009, 103, 040403. [Google Scholar] [CrossRef]
- Kirchmair, G.; Zähringer, F.; Gerritsma, R.; Kleinmann, M.; Gühne, O.; Cabello, A.; Blatt, R.; Roos, C.F. State-Independent Experimental Test of Quantum Contextuality. Nature 2009, 460, 494–497. [Google Scholar] [CrossRef]
- Moussa, O.; Ryan, C.A.; Cory, D.G.; Laflamme, R. Testing Contextuality on Quantum Ensembles with One Clean Qubit. Phys. Rev. Lett. 2010, 104, 160501. [Google Scholar] [CrossRef]
- Jerger, M.; Reshitnyk, Y.; Oppliger, M.; Potočnik, A.; Mondal, M.; Wallraff, A.; Goodenough, K.; Wehner, S.; Juliusson, K.; Langford, N.K.; et al. Contextuality without Nonlocality in a Superconducting Quantum System. Nat. Commun. 2016, 7, 12930. [Google Scholar] [CrossRef]
- Cabello, A.; D’Ambrosio, V.; Nagali, E.; Sciarrino, F. Hybrid Ququart-Encoded Quantum Cryptography Protected by Kochen-Specker Contextuality. Phys. Rev. A 2011, 84, 030302(R). [Google Scholar] [CrossRef]
- Nagata, K. Kochen-Specker Theorem as a Precondition for Secure Quantum Key Distribution. Phys. Rev. A 2005, 72, 012325. [Google Scholar] [CrossRef]
- Saha, D.; Horodecki, P.; Pawłowski, M. State Independent Contextuality Advances One-Way Communication. New J. Phys. 2019, 21, 093057. [Google Scholar] [CrossRef]
- Howard, M.; Wallman, J.; Veitech, V.; Emerson, J. Contextuality Supplies the ‘Magic’ for Quantum Computation. Nature 2014, 510, 351–355. [Google Scholar] [CrossRef]
- Bartlett, S.D. Powered by Magic. Nature 2014, 510, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Kurzyński, P.; Cabello, A.; Kaszlikowski, D. Fundamental Monogamy Relation between Contextuality and Nonlocality. Phys. Rev. Lett. 2014, 112, 100401. [Google Scholar] [CrossRef]
- Tavakoli, A.; Uola, R. Measurement Incompatibility and Steering Are Necessary and Sufficient for Operational Contextuality. Phys. Rev. Res. 2020, 2, 013011. [Google Scholar] [CrossRef]
- Megill, N.D.; Pavičić, M. Kochen-Specker Sets and Generalized Orthoarguesian Equations. Ann. Henri Poinc. 2011, 12, 1417–1429. [Google Scholar] [CrossRef]
- Klyachko, A.A.; Can, M.A.; Binicioğlu, S.; Shumovsky, A.S. Simple Test for Hidden Variables in Spin-1 Systems. Phys. Rev. Lett. 2008, 101, 020403. [Google Scholar] [CrossRef]
- Yu, S.; Oh, C.H. State-Independent Proof of Kochen-Specker Theorem with 13 Rays. Phys. Rev. Lett. 2012, 108, 030402. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, I.; Blanchfield, K.; Cabello, A. A Kochen–Specker Inequality from a SIC. Phys. Lett. A 2012, 376, 374. [Google Scholar] [CrossRef]
- Xu, Z.P.; Chen, J.L.; Su, H.Y. State-independent contextuality sets for a qutrit. Phys. Lett. A 2015, 379, 1868–1870. [Google Scholar] [CrossRef]
- Ramanathan, R.; Horodecki, P. Necessary and Sufficient Condition for State-Independent Contextual Measurement Scenarios. Phys. Rev. Lett. 2014, 112, 040404. [Google Scholar] [CrossRef]
- Cabello, A.; Kleinmann, M.; Budroni, C. Necessary and Sufficient Condition for Quantum State-Independent Contextuality. Phys. Rev. Lett. 2014, 114, 250402. [Google Scholar] [CrossRef] [PubMed]
- Cabello, A.; Portillo, J.R.; Solís, A.; Svozil, K. Minimal True-Implies-False and True-Implies-True Sets of Propositions in Noncontextual Hidden-Variable Theories. Phys. Rev. A 2018, 98, 012106. [Google Scholar] [CrossRef]
- Svozil, K. Extensions of Hardy-Type True-Implies-False Gadgets to Classically Obtain Indistinguishability. Phys. Rev. A 2021, 103, 022204. [Google Scholar] [CrossRef]
- Berge, C. Graphs and Hypergraphs; North-Holland Mathematical Library, North-Holland: Amsterdam, The Netherlands, 1973; Volume 6. [Google Scholar]
- Berge, C. Hypergraphs: Combinatorics of Finite Sets; North-Holland Mathematical Library, North-Holland: Amsterdam, The Netherlands, 1989; Volume 45. [Google Scholar]
- Bretto, A. Hypergraph Theory: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Voloshin, V.I. Introduction to Graph and Hypergraph Theory; Nova Science: New York, NY, USA, 2009. [Google Scholar]
- Pavičić, M. Hypergraph Contextuality. Entropy 2019, 21, 1107. [Google Scholar] [CrossRef]
- Pavičić, M.; Waegel, M. Generation Kochen-Specker Contextual Sets in Higher Dimensions by Dimensional Upscaling Whose Complexity Does not Scale with Dimension and Their Application. Phys. Rev. A 2024, 110, 012205. [Google Scholar] [CrossRef]
- Grötschel, M.; Lovász, L.; Schrijver, A. The Ellipsoid Method and Its Consequences in Combinatorial Optimization. Combinatorica 1981, 1, 169. [Google Scholar] [CrossRef]
- Amaral, B.; Cunha, M.T. On Graph Approaches to Contextuality and Their Role in Quantum Theory; SBMAC Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Pavičić, M.; Megill, N.D. Automated Generation of Arbitrarily Many Kochen-Specker and Other Contextual Sets in Odd Dimensional Hilbert Spaces. Phys. Rev. A 2022, 106, L060203. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Budroni, C.; Cabello, A.; Gühne, O.; Kleinmann, M.; Larsson, J.Å. Kochen-Specker Contextuality. Rev. Mod. Phys. 2022, 94, 0450007. [Google Scholar] [CrossRef]
- Cabello, A. Twin Inequality for Fully Contextual Quantum Correlations. Phys. Rev. A 2013, 87, 010104(R). [Google Scholar] [CrossRef]
- Pavičić, M.; Megill, N.D. Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces. Entropy 2018, 20, 928. [Google Scholar] [CrossRef] [PubMed]
- Pavičić, M. Arbitrarily Exhaustive Hypergraph Generation of 4-, 6-, 8-, 16-, and 32-Dimensional Quantum Contextual Sets. Phys. Rev. A 2017, 95, 062121. [Google Scholar] [CrossRef]
- Pavičić, M.; Waegel, M.; Megill, N.D.; Aravind, P. Automated Generation of Kochen-Specker Sets. Sci. Rep. 2019, 9, 6765. [Google Scholar] [CrossRef]
- Cabello, A.; García-Alcaine, G. Bell-Kochen-Specker Theorem for Any Finite Dimension n > 3. J. Phys. A 1996, 29, 1025. [Google Scholar] [CrossRef]
- Cabello, A.; Estebaranz, J.M.; García-Alcaine, G. Recursive Proof of the Bell-Kochen-Specker Theorem in any Dimension n > 3. Phys. Lett. A 2005, 339, 425–429. [Google Scholar] [CrossRef]
- Yu, X.D.; Tong, D.M. Coexistence of Kochen-Specker inequalities and noncontextuality inequalities. Phys. Rev. A 2014, 89, 010101(R). [Google Scholar] [CrossRef]
- Yu, X.D.; Guo, Y.Q.; Tong, D.M. A Proof of the Kochen–Specker Theorem Can Always Be Converted to a State-Independent Noncontextuality Inequality. New J. Phys. 2015, 17, 093001. [Google Scholar] [CrossRef]
- Cabello, A. Experimentally Testable State-Independent Quantum Contextuality. Phys. Rev. Lett. 2008, 101, 210401. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Wang, K.; Xiao, L.; Zhan, X.; Xue, P. State-Independent Test of Quantum Contextuality with Either Single Photons or Coherent Light. NPJ Quantum Inf. 2021, 7, 154. [Google Scholar] [CrossRef]
- Melnikov, O.; Sarvanov, V.; Tysbkevich, R.; Yemelichev, V.; Zverovich, I. Exercises in Graph Theory; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Horodecki, K.; Zhou, J.; Stankiewicz, M.; Salazar, R.; Horodecki, P.; Raussendorf, R.; Horodecki, R.; Ramanathan, R.; Tyhurst, E. The Rank of Contextuality. New J. Phys. 2023, 25, 073003. [Google Scholar] [CrossRef]
- Weisstein, E.W. Fractional Independence Number. MathWorld—A Wolfram Web Resource. 2024. Available online: https://mathworld.wolfram.com/FractionalIndependenceNumber.html (accessed on 30 December 2024).
- Cabello, A.; Severini, S.; Winter, A. Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett. 2014, 112, 040401. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Volume III. Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1965. [Google Scholar]
- Peres, A. Two Simple Proofs of the Bell-Kochen-Specker Theorem. J. Phys. A 1991, 24, L175–L178. [Google Scholar] [CrossRef]
- Kernaghan, M. Bell-Kochen-Specker Theorem for 20 Vectors. J. Phys. A 1994, 27, L829–L830. [Google Scholar] [CrossRef]
- Cabello, A.; Estebaranz, J.M.; García-Alcaine, G. Bell-Kochen-Specker Theorem: A Proof with 18 Vectors. Phys. Lett. A 1996, 212, 183–187. [Google Scholar] [CrossRef]
- Pavičić, M. Vector Generation of Quantum Contextual Sets: QTech2018, Paris. EPJ Web Conf. 2019, 198, 00009. Available online: https://www.youtube.com/watch?v=Bw2vItz5trE (accessed on 30 December 2024). [CrossRef]
- Waegell, M.; Aravind, P.K. Critical Noncolorings of the 600-Cell Proving the Bell-Kochen-Specker Theorem. J. Phys. A 2010, 43, 105304. [Google Scholar] [CrossRef]
- Waegell, M.; Aravind, P.K. Parity Proofs of the Kochen-Specker Theorem Based on 60 Complex Rays in Four Dimensions. J. Phys. A 2011, 44, 505303. [Google Scholar] [CrossRef]
- Waegell, M.; Aravind, P.K. Parity Proofs of the Kochen-Specker Theorem Based on 120-Cell. Found. Phys. 2014, 44, 1085. [Google Scholar] [CrossRef]
- Waegell, M.; Aravind, P.K. Parity Proofs of the Kochen-Specker Theorem Based on the Lie Algebra E8. J. Phys. A 2015, 48, 225301. [Google Scholar] [CrossRef]
- Elford, B.; Lisoněk, P. Kochen-Specker sets in four-dimensional spaces. arXiv 2020. [Google Scholar] [CrossRef]
- Hofmann, H.F. Statistical Signatures of Quantum Contextuality. Entropy 2024, 26, 725. [Google Scholar] [CrossRef]
- Planat, M.; Saniga, M. Five-Qubit Contextuality, Noise-Like Distribution of Distances Between Maximal Bases and Finite Geometry. Phys. Lett. A 2012, 376, 3485–3490. [Google Scholar] [CrossRef]
- Bechmann-Pasquinucci, H.; Tittel, W. Quantum Cryptography Using Larger Alphabets. Phys. Rev. A 2000, 61, 062308. [Google Scholar] [CrossRef]
- Svozil, K. Bertlmann’s Chocolate Balls and Quantum Type Cryptography. In Physics and Computation 2010, Proceedings of the 3rd International Workshop, Aswan, Egypt, 30 August–4 September 2010; Guerra, H., Ed.; Department of Mathematics, University of Azores: Delgada, Portugal, 2010; pp. 235–249. Available online: https://www.pc2010.uac.pt/contents/pc2010_proceedings.pdf (accessed on 30 December 2024).
- Krenn, M.; Huber, M.; Fickler, R.; Lapkiewicz, R.; Ramelow, S.; Zeilinger, A. Generation and Confirmation of a (100×100)-Dimensional Entangled Quantum System. Proc. Natl. Acad. Sci. USA 2014, 111, 6243–6247. [Google Scholar] [CrossRef] [PubMed]
- Tekin, B. Stern-Gerlach Experiment with Higher Spins. Eur. J. Phys. 2016, 37, 035401. [Google Scholar] [CrossRef]
- Stipčević, M. Quantum Random Flip-Flop and Its Applications in Random Frequency Synthesis and True Random Number Generation. Rev. Sci. Instrum. 2016, 87, 035113. [Google Scholar] [CrossRef]
- Lisoněk, P. Kochen-Specker sets and Hadamard matrices. Theor. Comp. Sci. 2019, 800, 042101. [Google Scholar] [CrossRef]
dim | Master | No. of Non-Isom Criticals | Methods | Smallest KS and Non-KS Criticals | Vector Components | References |
---|---|---|---|---|---|---|
3-dim | 13-7 † | 1 | M4-5 | 7-7 ‡ | see text | |
13-7 † | 1 | M4-5 | 8-7 ‡ | see text | ||
97-64 | 1 | M1-2 | 49-36 * (33-36 ‡) | [3] | ||
81-52 | 1 | M1-2 | 57-40 * (33-50 ‡) | [3] | ||
169-120 | 3 | M1-2 | 69-50 * (33-50 ‡, 8-8 ‡) | [3], see text | ||
597-358 | 3 | M1-2 | 95-66 * (58-66 ‡) | golden ratio—see text | see text |
dim | Master | No. of Non-Isom Criticals | Methods | KS and Non-KS Criticals | Vector Components | References |
---|---|---|---|---|---|---|
4-dim | 86-152 | >8 millions | M1-6 | 10-7 ‡, 15-9 ‡, 18-9, 24-13 | see text | |
92-185 | 600,000 | M1-6 | 18-9 (smallest) | [55,56] | ||
888-1080 | >1.5 billions | M1-6 | 18-9 (smallest) | [55,56] | ||
400-1012 | >250,000 | M1-6 | 18-9 (smallest) | [55,56] and here | ||
10-5 | 1 | M6 | 10-5 | none ? | see text | |
14-7 | 1 | M6 | 14-7 | none ? | see text |
dim | Master | No. of Non-Isom Criticals | Methods | Small MMPHs | Vector Components | References |
---|---|---|---|---|---|---|
5-dim | 105-136 | >27.8 millions | M1 | 29-16 * | see text | |
38-20 | - | M2-3 | 5-11 ‡ | see text | ||
6-dim | 216-153 | 3 | M1 | 33-11 * | see text | |
236-1216 | >3.7 millions | M2-3 | 32-11† (24-11 ‡) | see text | ||
7-dim | 47-176 | >1 million | M2,8 | 34-14 * | [47,50] | |
805-9936 | >42,800 | M1,3 | 14-18 ‡ | [4] | ||
8-dim | 3280-1361376 | >7 millions | M1-2 | 36-9 * (15-9 ‡) | [4,50] |
dim | Smallest Critical Non-KS NBMMPHs | Master | Vector Components |
---|---|---|---|
9-dim | 17-7 | 47-16 | |
10-dim | 18-9 | 50-15 | |
11-dim | 19-8 | 50-14 | |
12-dim | 19-9 | 52-9 | |
13-dim | 19-8 | 63-16 | |
14-dim | 19-9 | 66-15 | |
15-dim | 25-8 | 66-14 | |
16-dim | 22-9 | 70-9 | |
27-dim | 36-5 | 141-16 | |
32-dim | 40-5 | 144-11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavičić, M. Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions. Entropy 2025, 27, 54. https://doi.org/10.3390/e27010054
Pavičić M. Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions. Entropy. 2025; 27(1):54. https://doi.org/10.3390/e27010054
Chicago/Turabian StylePavičić, Mladen. 2025. "Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions" Entropy 27, no. 1: 54. https://doi.org/10.3390/e27010054
APA StylePavičić, M. (2025). Quantum Contextual Hypergraphs, Operators, Inequalities, and Applications in Higher Dimensions. Entropy, 27(1), 54. https://doi.org/10.3390/e27010054