Kramers–Wannier Duality and Random-Bond Ising Model
Abstract
1. Introduction
2. Ihara Zeta Function
3. Manifestly Dual Formula
4. Order and Disorder Operators
5. Implication to RBIM
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KW | Kramers–Wannier |
RBIM | Random-Bond Ising Model |
References
- Kramers, H.A.; Wannier, G.H. Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 1941, 60, 252. [Google Scholar] [CrossRef]
- Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117. [Google Scholar] [CrossRef]
- Kaufman, B. Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 1949, 76, 1232. [Google Scholar] [CrossRef]
- Kaufman, B.; Onsager, L. Crystal statistics. III. Short-range order in a binary Ising lattice. Phys. Rev. 1949, 76, 1244. [Google Scholar] [CrossRef]
- Kadanoff, L.P.; Ceva, H. Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 1971, 3, 3918. [Google Scholar] [CrossRef]
- Fradkin, E. Disorder operators and their descendants. J. Stat. Phys. 2017, 167, 427–461. [Google Scholar] [CrossRef]
- McCoy, B.M.; Wu, T.T. The Two-Dimensional Ising Model; Harvard University Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Kac, M.; Ward, J.C. A combinatorial solution of the two-dimensional Ising model. Phys. Rev. 1952, 88, 1332. [Google Scholar] [CrossRef]
- Harary, F. Graph Theory and Theoretical Physics; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Harary, F. A Graphical Exposition of the Ising Problem. J. Aust. Math. Soc. 1971, 12, 365–377. [Google Scholar] [CrossRef]
- Sherman, S. Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1960, 1, 202–217. [Google Scholar] [CrossRef]
- Sherman, S. Combinatorial aspects of the Ising model for ferromagnetism. II. An analogue to the Witt identity. Bull. Am. Math. Soc. 1962, 68, 225–229. [Google Scholar] [CrossRef]
- Sherman, S. Addendum: Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1963, 4, 1213–1214. [Google Scholar] [CrossRef]
- Burgoyne, P. Remarks on the combinatorial approach to the Ising problem. J. Math. Phys. 1963, 4, 1320–1326. [Google Scholar] [CrossRef]
- Hurst, C.A.; Green, H.S. New solution of the Ising problem for a rectangular lattice. J. Chem. Phys. 1960, 33, 1059–1062. [Google Scholar] [CrossRef]
- Potts, R.B.; Ward, J.C. The combinatrial method and the two-dimensional Ising model. Prog. Theor. Phys. 1955, 13, 38–46. [Google Scholar] [CrossRef]
- Kasteleyn, P.W. Dimer statistics and phase transitions. J. Math. Phys. 1963, 4, 287–293. [Google Scholar] [CrossRef]
- Montroll, E.W.; Potts, R.B.; Ward, J.C. Correlations and spontaneous magnetization of the two-dimensional Ising model. J. Math. Phys. 1963, 4, 308–322. [Google Scholar] [CrossRef]
- Fisher, M.E. On the dimer solution of planar Ising models. J. Math. Phys. 1966, 7, 1776–1781. [Google Scholar] [CrossRef]
- Mercat, C. Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 2001, 218, 177–216. [Google Scholar] [CrossRef]
- Smirnov, S. Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2006, 2, 1421–1451. [Google Scholar]
- Smirnov, S. Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model. Ann. Math. 2010, 172, 1435–1467. [Google Scholar] [CrossRef]
- Chelkak, D.; Cimasoni, D.; Kassel, A. Revisiting the combinatorics of the 2D Ising model. Ann. l’Inst. Henri Poincaré D 2017, 4, 309–385. [Google Scholar] [CrossRef] [PubMed]
- Cimasoni, D. The critical Ising model via Kac–Ward matrices. Commun. Math. Phys. 2012, 316, 99–126. [Google Scholar] [CrossRef]
- Cimasoni, D. Kac–Ward operators, Kasteleyn operators, and s-holomorphicity on arbitrary surface graphs. Ann. l’Inst. Henri Poincaré D 2015, 2, 113–168. [Google Scholar] [CrossRef] [PubMed]
- Ihara, Y. On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Jpn. 1966, 18, 219–235. [Google Scholar] [CrossRef]
- Sunada, T. L-functions in geometry and some applications. In Curvature and Topology of Riemannian Manifolds: Proceedings of the 17th International Taniguchi Symposium, Katata, Japan, 26–31 August 1985; Springer: Berlin/Heidelberg, Germany, 2006; pp. 266–284. [Google Scholar]
- Hashimoto, K.I. Zeta functions of finite graphs and representations of p-adic groups. Automorphic Forms Geom. Arith. Var. 1989, 15, 211–280. [Google Scholar]
- Bass, H. The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 1992, 3, 717–797. [Google Scholar] [CrossRef]
- Foata, D.; Zeilberger, D. A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs. Trans. Am. Math. Soc. 1999, 351, 2257–2274. [Google Scholar] [CrossRef]
- Terras, A. A Stroll through the Garden of Graph Zeta Functions; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hoffman, J.W. Remarks on the zeta function of a graph. Conf. Publ. 2003, 2003, 413–422. [Google Scholar]
- Domany, E. Some results for the two-dimensional Ising model with competing interactions. J. Phys. C Solid State Phys. 1979, 12, L119. [Google Scholar] [CrossRef]
- Vannimenus, J.; Toulouse, G. Theory of the frustration effect. II. Ising spins on a square lattice. J. Phys. C Solid State Phys. 1977, 10, L537. [Google Scholar] [CrossRef]
- Grinstein, G.; Jayaprakash, C.; Wortis, M. Ising magnets with frustration: Zero-temperature properties from series expansions. Phys. Rev. B 1979, 19, 260. [Google Scholar] [CrossRef]
- Nishimori, H.; Nemoto, K. Duality and multicritical point of two-dimensional spin glasses. J. Phys. Soc. Jpn. 2002, 71, 1198–1199. [Google Scholar] [CrossRef]
- Fradkin, E.; Kadanoff, L.P. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B 1980, 170, 1–15. [Google Scholar] [CrossRef]
- Kang, M.H.; Li, W.C.W. Zeta functions of complexes arising from PGL (3). Adv. Math. 2014, 256, 46–103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C. Kramers–Wannier Duality and Random-Bond Ising Model. Entropy 2024, 26, 636. https://doi.org/10.3390/e26080636
Song C. Kramers–Wannier Duality and Random-Bond Ising Model. Entropy. 2024; 26(8):636. https://doi.org/10.3390/e26080636
Chicago/Turabian StyleSong, Chaoming. 2024. "Kramers–Wannier Duality and Random-Bond Ising Model" Entropy 26, no. 8: 636. https://doi.org/10.3390/e26080636
APA StyleSong, C. (2024). Kramers–Wannier Duality and Random-Bond Ising Model. Entropy, 26(8), 636. https://doi.org/10.3390/e26080636