A Possibilistic Formulation of Autonomous Search for Targets
Abstract
1. Introduction
2. Problem Formulation
3. Background
3.1. Probabilistic Search
3.2. The Possibilistic Estimation Framework
4. Theoretical Formulation of Possibilistic Search
4.1. Information State
- 1.
- The posterior possibility of target presence ;
- 2.
- The posterior probability of target absence .
4.2. Epistemic Reward
5. Numerical Results
5.1. Simulation Setup and a Single Run
5.2. Monte Carlo Runs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shlesinger, M.F. Search research. Nature 2006, 443, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Stone, L.D.; Royset, J.O.; Washburn, A.R. Optimal Search for Moving Targets; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Marjovi, A.; Marques, L. Multi-robot olfactory search in structured environment. Robot. Auton. Syst. 2011, 59, 867–881. [Google Scholar] [CrossRef]
- Pitre, R.R.; Li, X.R.; Delbalzo, R. UAV route planning for joint search and track missions—An information-value approach. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2551–2565. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Environmental chemical sensing using small drones: A review. Sci. Total Environ. 2020, 748, 141172. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; An, S.; Seo, J.; Oh, H. Autonomous source search for UAVs using Gaussian mixture model-based infotaxis: Algorithm and flight experiments. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4238–4254. [Google Scholar] [CrossRef]
- Koopman, B.O. Search and screening. OEG Rep. 1946. Available online: https://www.loc.gov/resource/gdcmassbookdig.searchscreening56koop/?st=gallery (accessed on 13 June 2024).
- Bakut, P.A.; Zhulina, Y.V. Optimal control of cell scanning sequence in search for objects. Eng. Cybern. 1971, 9, 740–746. [Google Scholar]
- Krout, D.W.; Fox, W.L.J.; El-Sharkawi, M.A. Probability of target presence for multistatic sonar ping sequencing. IEEE J. Ocean. Eng. 2009, 34, 603–609. [Google Scholar] [CrossRef]
- Angley, D.; Ristic, B.; Moran, W.; Himed, B. Search for targets in a risky environment using multi-objective optimisation. IET Radar Sonar Navig. 2019, 13, 123–127. [Google Scholar] [CrossRef]
- Kendall, R.J.; Presley, S.M.; Austin, G.P.; Smith, P.N. Advances in Biological and Chemical Terrorism Countermeasures; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Furukawa, T.; Mak, L.C.; Durrant-Whyte, H.; Madhavan, R. Autonomous Bayesian search and tracking, and its experimental validation. Adv. Robot. 2012, 26, 461–485. [Google Scholar] [CrossRef]
- Ristic, B.; Skvortsov, A.; Gunatilaka, A. A study of cognitive strategies for an autonomous search. Inf. Fusion 2016, 28, 1–9. [Google Scholar] [CrossRef]
- Haley, K. Search Theory and Applications; Springer Science & Business Media: New York, NY, USA, 2012; Volume 8. [Google Scholar]
- Chong, E.K.P.; Kreucher, C.M.; Hero, A.O. POMDP approximation using simulation and heuristics. In Foundations and Applications of Sensor Management; Springer: Cham, Switzerland, 2008; pp. 95–119. [Google Scholar]
- Hero, A.O., III; Kreucher, C.M.; Blatt, D. Information theoretic approaches to sensor management. In Foundations and Applications of Sensor Management; Springer: Boston, MA, USA, 2008; pp. 33–57. [Google Scholar]
- Hampel, F. Nonadditive probabilities in statistics. J. Stat. Theory Pract. 2009, 3, 11–23. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Yager, R.R.; Liu, L. Classic Works of the Dempster-Shafer Theory of Belief Functions; Springer: Cham, Switzerland, 2008; Volume 219. [Google Scholar]
- Walley, P. Statistical Reasoning with Imprecise Probabilities; Springer: Cham, Switzerland, 1991; Volume 42. [Google Scholar]
- Dubois, D.; Prade, H.; Sandri, S. On possibility/probability transformations. In Fuzzy Logic: State of the Art; Springer: Dordrecht, The Netherlands, 1993; pp. 103–112. [Google Scholar]
- Dubois, D.; Prade, H. Possibility theory and its applications: Where do we stand? In Springer Handbook of Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 31–60. [Google Scholar]
- Ristic, B.; Houssineau, J.; Arulampalam, S. Robust target motion analysis using the possibility particle filter. IET Radar Sonar Navig. 2019, 13, 18–22. [Google Scholar] [CrossRef]
- Ristic, B.; Houssineau, J.; Arulampalam, S. Target tracking in the framework of possibility theory: The possibilistic Bernoulli filter. Inf. Fusion 2020, 62, 81–88. [Google Scholar] [CrossRef]
- Chen, Z.; Ristic, B.; Houssineau, J.; Kim, D.Y. Observer control for bearings-only tracking using possibility functions. Automatica 2021, 133, 109888. [Google Scholar] [CrossRef]
- Houssineau, J.; Zeng, J.; Jasra, A. Uncertainty modelling and computational aspects of data association. Stat. Comput. 2021, 31, 1–19. [Google Scholar] [CrossRef]
- Ristic, B. Target tracking in the framework of possibility theory. ISIF Perspect. Inf. Fusion 2023, 6, 47–48. [Google Scholar]
- Houssineau, J.; Bishop, A.N. Smoothing and filtering with a class of outer measures. SIAM/ASA J. Uncertain. Quantif. 2018, 6, 845–866. [Google Scholar] [CrossRef]
- Bishop, A.N.; Houssineau, J.; Angley, D.; Ristic, B. Spatio-temporal tracking from natural language statements using outer probability theory. Inf. Sci. 2018, 463, 56–74. [Google Scholar] [CrossRef]
- Houssineau, J. A linear algorithm for multi-target tracking in the context of possibility theory. IEEE Trans. Signal Process. 2021, 69, 2740–2751. [Google Scholar] [CrossRef]
- Boughanem, M.; Brini, A.; Dubois, D. Possibilistic networks for information retrieval. Int. J. Approx. Reason. 2009, 50, 957–968. [Google Scholar] [CrossRef]
- Ristic, B.; Gilliam, C.; Byrne, M.; Benavoli, A. A tutorial on uncertainty modeling for machine reasoning. Inf. Fusion 2020, 55, 30–44. [Google Scholar] [CrossRef]
- Campos, L.M.D.; Huete, J.F.; Moral, S. Probability intervals: A tool for uncertain reasoning. Intern. J. Uncertain. Fuzziness-Knowl.-Based Syst. 1994, 2, 167–196. [Google Scholar] [CrossRef]
- Masson, M.-H.; Denoeux, T. Inferring a possibility distribution from empirical data. Fuzzy Sets Syst. 2006, 157, 319–340. [Google Scholar] [CrossRef]
- Klir, G.J.; Smith, R.M. On measuring uncertainty and uncertainty-based information: Recent developments. Ann. Math. Artif. Intell. 2001, 32, 5–33. [Google Scholar] [CrossRef]
- Abellán, J. Uncertainty measures on probability intervals from the imprecise dirichlet model. Intern. J. Gen. Syst. 2006, 35, 509–528. [Google Scholar] [CrossRef]
- Pota, M.; Esposito, M.; Pietro, G.D. Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach. Fuzzy Sets Syst. 2013, 233, 52–73. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Schuhmacher, D.; Vo, B.-T.; Vo, B.-N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Ristic, B.; Kim, D.Y. A Possibilistic Formulation of Autonomous Search for Targets. Entropy 2024, 26, 520. https://doi.org/10.3390/e26060520
Chen Z, Ristic B, Kim DY. A Possibilistic Formulation of Autonomous Search for Targets. Entropy. 2024; 26(6):520. https://doi.org/10.3390/e26060520
Chicago/Turabian StyleChen, Zhijin, Branko Ristic, and Du Yong Kim. 2024. "A Possibilistic Formulation of Autonomous Search for Targets" Entropy 26, no. 6: 520. https://doi.org/10.3390/e26060520
APA StyleChen, Z., Ristic, B., & Kim, D. Y. (2024). A Possibilistic Formulation of Autonomous Search for Targets. Entropy, 26(6), 520. https://doi.org/10.3390/e26060520