View-Driven Multi-View Clustering via Contrastive Double-Learning
Abstract
:1. Introduction
- Introduction of a VMC-CD technique, which incorporates valuable information from alternate views while learning feature representations across diverse viewpoints. It provides guidance information in an attention-driven manner, effectively integrating multiple views into a discriminative common representation to guide feature learning.
- Introduction of dual contrastive learning, conducting contrastive learning at both the clustering and feature levels, encouraging consistency in clustering across multiple views while preserving their feature diversity.
- Experiments on three multi-view datasets, demonstrating the effectiveness of the VMC-CD method.
2. Related Work
2.1. Multi-View Clustering
2.2. Contrastive Learning
3. Methods
3.1. Problem Formulation
3.2. Overview of the Network Architecture
3.3. Deep Autoencoder Module
3.4. Dual Contrastive Learning Module
3.5. The Attention Weight Learning Module (AT BLOCK)
3.6. Total Loss Function
3.7. Complexity Analysis
3.8. Algorithm Flow
Algorithm 1 View-driven dual-contrastive learning in multi-view clustering |
|
4. Experiment
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Evaluation Metrics
4.1.3. Network Architecture and Parameter Settings
4.2. Performance Evaluation
4.3. Ablation Studies
4.4. Parameter Sensitivity Analysis
4.5. Training Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Yang, S.; Peng, X.; Peng, D.; Wang, Z. Augmented sparse representation for incomplete multiview clustering. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 4058–4071. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ren, Y.; Tang, H.; Yang, Z.; Pan, L.; Yang, Y.; Pu, X.; Philip, S.Y.; He, L. Self-supervised discriminative feature learning for deep multi-view clustering. IEEE Trans. Knowl. Data Eng. 2022, 35, 7470–7482. [Google Scholar] [CrossRef]
- Hu, P.; Peng, D.; Sang, Y.; Xiang, Y. Multi-view linear discriminant analysis network. IEEE Trans. Image Process. 2019, 28, 5352–5365. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zhao, X.; Peng, C.; Zhu, H.; Zhou, J.T.; Peng, X.; Chen, W.; Xu, Z. Partition level multiview subspace clustering. Neural Netw. 2020, 122, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, C.; Fu, H.; Peng, X.; Zhou, T.; Hu, Q. Reciprocal multi-layer subspace learning for multi-view clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Repulic of Korea, 27 October–2 November 2019; pp. 8172–8180. [Google Scholar]
- Zhou, R.; Shen, Y.D. End-to-end adversarial-attention network for multi-modal clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14619–14628. [Google Scholar]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Li, Z.; Wang, J.; Liu, X.; Zhang, W.; Zhu, E. Unified one-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 2022, 35, 6449–6460. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, C.; Fu, H.; Zhou, J.T. Trusted multi-view classification with dynamic evidential fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2551–2566. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.; Xiong, J.; Zhou, S.; Zhao, W.; Zhu, E.; Cai, Z. Consensus one-step multi-view subspace clustering. IEEE Trans. Knowl. Data Eng. 2020, 34, 4676–4689. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.; Mao, H.; Fahy, C. Multiview subspace clustering using low-rank representation. IEEE Trans. Cybern. 2021, 52, 12364–12378. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Li, J.; Fu, H.; Kong, Y.; Fu, Y. From ensemble clustering to subspace clustering: Cluster structure encoding. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2670–2681. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, C.; Guan, Z.; Liu, Y. Multiview concept learning via deep matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, S. One-pass incomplete multi-view clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3838–3845. [Google Scholar]
- Li, L.; Wan, Z.; He, H. Incomplete multi-view clustering with joint partition and graph learning. IEEE Trans. Knowl. Data Eng. 2021, 35, 589–602. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Tang, C.; Xia, J.; Xiong, J.; Liu, L.; Kloft, M.; Zhu, E. Efficient and effective regularized incomplete multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2634–2646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, D.; Fu, Z.; Wen, J.; Zhao, Y. Graph contrastive partial multi-view clustering. IEEE Trans. Multimed. 2022, 25, 6551–6562. [Google Scholar] [CrossRef]
- Wang, Q.; Tao, Z.; Xia, W.; Gao, Q.; Cao, X.; Jiao, L. Adversarial multiview clustering networks with adaptive fusion. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7635–7647. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, Y.; Tsang, I.W.; Zhu, H.; Lv, J.; Zhou, J.T. XAI beyond classification: Interpretable neural clustering. J. Mach. Learn. Res. 2022, 23, 1–28. [Google Scholar]
- Yang, M.; Li, Y.; Hu, P.; Bai, J.; Lv, J.; Peng, X. Robust multi-view clustering with incomplete information. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Q.; Tao, Z.; Gao, Q.; Yang, Z. Deep adversarial multi-view clustering network. Proc. Ijcai 2019, 2, 4. [Google Scholar]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Li, Y.; Hu, P.; Liu, Z.; Peng, D.; Zhou, J.T.; Peng, X. Contrastive clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 8547–8555. [Google Scholar]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Xu, J.; Tang, H.; Ren, Y.; Peng, L.; Zhu, X.; He, L. Multi-level feature learning for contrastive multi-view clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16051–16060. [Google Scholar]
- Yang, M.; Huang, Z.; Hu, P.; Li, T.; Lv, J.; Peng, X. Learning with twin noisy labels for visible-infrared person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 14308–14317. [Google Scholar]
- Andrew, G.; Arora, R.; Bilmes, J.; Livescu, K. Deep canonical correlation analysis. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1247–1255. [Google Scholar]
- Cao, X.; Zhang, C.; Fu, H.; Liu, S.; Zhang, H. Diversity-induced multi-view subspace clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 586–594. [Google Scholar]
- Jiang, G.; Peng, J.; Wang, H.; Mi, Z.; Fu, X. Tensorial multi-view clustering via low-rank constrained high-order graph learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5307–5318. [Google Scholar] [CrossRef]
- Wang, H.; Yao, M.; Jiang, G.; Mi, Z.; Fu, X. Graph-collaborated auto-encoder hashing for multiview binary clustering. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, C.; Gao, J.; Han, J. Multi-view clustering via joint nonnegative matrix factorization. In Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, Austin, TX, USA, 2–4 May 2013; pp. 252–260. [Google Scholar]
- Zhao, H.; Ding, Z.; Fu, Y. Multi-view clustering via deep matrix factorization. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Yang, Z.; Xu, Q.; Zhang, W.; Cao, X.; Huang, Q. Split multiplicative multi-view subspace clustering. IEEE Trans. Image Process. 2019, 28, 5147–5160. [Google Scholar] [CrossRef] [PubMed]
- Blaschko, M.B.; Lampert, C.H. Correlational spectral clustering. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Chaudhuri, K.; Kakade, S.M.; Livescu, K.; Sridharan, K. Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 129–136. [Google Scholar]
- Wang, H.; Wang, Y.; Zhang, Z.; Fu, X.; Zhuo, L.; Xu, M.; Wang, M. Kernelized multiview subspace analysis by self-weighted learning. IEEE Trans. Multimed. 2020, 23, 3828–3840. [Google Scholar] [CrossRef]
- Nie, F.; Li, J.; Li, X. Self-weighted multiview clustering with multiple graphs. In Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017; pp. 2564–2570. [Google Scholar]
- Tao, Z.; Liu, H.; Li, S.; Ding, Z.; Fu, Y. Marginalized multiview ensemble clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Wang, X.; Shi, C.; Lu, E.; Lin, K.; Wang, B. One2multi graph autoencoder for multi-view graph clustering. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 3070–3076. [Google Scholar]
- Wang, H.; Jiang, G.; Peng, J.; Deng, R.; Fu, X. Towards adaptive consensus graph: Multi-view clustering via graph collaboration. IEEE Trans. Multimed. 2022, 25, 6629–6641. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Wang, L.; Dou, Y.; Yin, J.; Zhu, E. Multiple Kernel Clustering with Local Kernel Alignment Maximization; AAAI Press: Washington, DC, USA, 2016. [Google Scholar]
- Wang, Y.; Liu, X.; Dou, Y.; Lv, Q.; Lu, Y. Multiple kernel learning with hybrid kernel alignment maximization. Pattern Recognit. 2017, 70, 104–111. [Google Scholar] [CrossRef]
- Abavisani, M.; Patel, V.M. Deep multimodal subspace clustering networks. IEEE J. Sel. Top. Signal Process. 2018, 12, 1601–1614. [Google Scholar] [CrossRef]
- Zhu, P.; Hui, B.; Zhang, C.; Du, D.; Wen, L.; Hu, Q. Multi-view deep subspace clustering networks. arXiv 2019, arXiv:1908.01978. [Google Scholar]
- Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 1735–1742. [Google Scholar]
- Lin, Y.; Gou, Y.; Liu, Z.; Li, B.; Lv, J.; Peng, X. Completer: Incomplete multi-view clustering via contrastive prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11174–11183. [Google Scholar]
- Li, Y.; Nie, F.; Huang, H.; Huang, J. Large-scale multi-view spectral clustering via bipartite graph. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [Google Scholar]
- Fei-Fei, L.; Perona, P. A bayesian hierarchical model for learning natural scene categories. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 524–531. [Google Scholar]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Hull, J.J. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554. [Google Scholar] [CrossRef]
- Cai, X.; Wang, H.; Huang, H.; Ding, C. Joint stage recognition and anatomical annotation of drosophila gene expression patterns. Bioinformatics 2012, 28, i16–i24. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Fu, Y. Incomplete multi-modal visual data grouping. In Proceedings of the IJCAI, New York, NY, USA, 9–16 July 2016; pp. 2392–2398. [Google Scholar]
- Hu, M.; Chen, S. Doubly aligned incomplete multi-view clustering. arXiv 2019, arXiv:1903.02785. [Google Scholar]
- Wen, J.; Zhang, Z.; Xu, Y.; Zhang, B.; Fei, L.; Liu, H. Unified embedding alignment with missing views inferring for incomplete multi-view clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5393–5400. [Google Scholar]
- Wang, W.; Arora, R.; Livescu, K.; Bilmes, J. On deep multi-view representation learning. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 1083–1092. [Google Scholar]
- Li, S.Y.; Jiang, Y.; Zhou, Z.H. Partial multi-view clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec, QC, Canada, 27–31 July 2014; Volume 28. [Google Scholar]
- Zhang, C.; Liu, Y.; Fu, H. Ae2-nets: Autoencoder in autoencoder networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2577–2585. [Google Scholar]
- Wang, H.; Zong, L.; Liu, B.; Yang, Y.; Zhou, W. Spectral perturbation meets incomplete multi-view data. arXiv 2019, arXiv:1906.00098. [Google Scholar]
- Ma, Z.; Yu, J.; Wang, L.; Chen, H.; Zhao, Y.; He, X.; Wang, Y.; Song, Y. Multi-view clustering based on view-attention driven. Int. J. Mach. Learn. Cybern. 2023, 14, 2621–2631. [Google Scholar] [CrossRef]
- Guo, X.; Gao, L.; Liu, X.; Yin, J. Improved deep embedded clustering with local structure preservation. Proc. IJCAI 2017, 17, 1753–1759. [Google Scholar]
- Zhang, Z.; Liu, L.; Shen, F.; Shen, H.T.; Shao, L. Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, X.; Zhu, E.; Tang, C.; Liu, J.; Hu, J.; Xia, J.; Yin, J. Multi-view Clustering via Late Fusion Alignment Maximization. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 3778–3784. [Google Scholar]
- Ren, Y.; Huang, S.; Zhao, P.; Han, M.; Xu, Z. Self-paced and auto-weighted multi-view clustering. Neurocomputing 2020, 383, 248–256. [Google Scholar] [CrossRef]
- Wen, J.; Wu, Z.; Zhang, Z.; Fei, L.; Zhang, B.; Xu, Y. Structural deep incomplete multi-view clustering network. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 1–5 November 2021; pp. 3538–3542. [Google Scholar]
- Trosten, D.J.; Lokse, S.; Jenssen, R.; Kampffmeyer, M. Reconsidering representation alignment for multi-view clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1255–1265. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Methods | Caltech101-20 | Scene-15 | LandUse-21 | ||||||
---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ARI | ACC | NMI | ARI | ACC | NMI | ARI | |
IMG | 44.51 | 61.35 | 35.74 | 24.20 | 25.64 | 9.57 | 16.40 | 27.11 | 5.10 |
EERIMVC | 43.28 | 55.04 | 30.42 | 39.60 | 38.99 | 22.06 | 24.92 | 29.57 | 12.24 |
DAIMC | 45.48 | 61.79 | 32.40 | 32.09 | 33.55 | 17.42 | 24.35 | 29.35 | 10.26 |
UEAF | 47.40 | 57.90 | 38.98 | 34.37 | 36.69 | 18.52 | 23.00 | 27.05 | 8.79 |
DCCAE | 44.05 | 59.12 | 34.56 | 36.44 | 39.78 | 21.47 | 15.62 | 24.41 | 4.42 |
PVC | 44.91 | 62.13 | 35.77 | 30.83 | 31.05 | 14.98 | 25.22 | 30.45 | 11.72 |
AE2-Nets | 49.10 | 65.38 | 35.66 | 36.10 | 40.39 | 22.08 | 24.79 | 30.36 | 10.35 |
DCCA | 41.89 | 59.14 | 33.39 | 36.18 | 38.92 | 20.87 | 15.51 | 23.15 | 4.43 |
PICCAE | 62.27 | 67.93 | 51.56 | 38.72 | 40.46 | 22.12 | 24.86 | 29.74 | 10.48 |
COMPLETER | 70.18 | 68.06 | 77.88 | 41.07 | 44.68 | 24.78 | 25.63 | 31.73 | 13.05 |
ATTENTION | 74.88 | 71.25 | 86.45 | 41.93 | 44.08 | 25.10 | 26.68 | 31.89 | 13.64 |
Ours | 77.70 | 73.11 | 92.04 | 44.77 | 45.66 | 26.91 | 27.76 | 33.93 | 13.88 |
Methods | MNIST-USPS | BDGP | ||||
---|---|---|---|---|---|---|
ACC | NMI | ARI | ACC | NMI | ARI | |
DEC | 73.10 | 71.46 | 63.23 | 94.78 | 86.62 | 87.02 |
IDEC | 76.58 | 76.89 | 68.01 | 95.96 | 89.40 | 90.25 |
BMVC | 88.02 | 89.45 | 84.48 | 34.92 | 12.02 | 8.33 |
MVC-LFA | 76.78 | 67.49 | 60.92 | 54.68 | 33.45 | 28.81 |
DAMC | 71.72 | 80.85 | 69.80 | 98.22 | 94.61 | 94.37 |
SAMVC | 69.65 | 74.58 | 60.90 | 53.86 | 46.25 | 20.99 |
CDIMC-net | 62.03 | 67.63 | 63.38 | 88.27 | 78.93 | 81.94 |
EAMC | 73.04 | 83.53 | 72.15 | 67.56 | 47.02 | 39.31 |
SiMVC | 97.74 | 96.30 | 95.28 | 69.72 | 53.26 | 44.55 |
CoMVC | 98.47 | 97.35 | 98.01 | 80.68 | 67.39 | 59.28 |
Ours | 99.46 | 98.46 | 98.80 | 99.00 | 96.82 | 97.53 |
ACC (%) | NMI (%) | ARI (%) | |||
---|---|---|---|---|---|
✓ | - | ✓ | 68.48 | 68.11 | 85.20 |
✓ | ✓ | - | 52.85 | 56.76 | 51.62 |
✓ | ✓ | ✓ | 77.70 | 73.11 | 92.04 |
ACC (%) | NMI (%) | ARI (%) | |||
---|---|---|---|---|---|
✓ | - | ✓ | 43.79 | 45.09 | 26.64 |
✓ | ✓ | - | 41.36 | 40.06 | 23.46 |
✓ | ✓ | ✓ | 44.77 | 45.66 | 26.91 |
ACC (%) | NMI (%) | ARI (%) | |||
---|---|---|---|---|---|
✓ | - | ✓ | 27.67 | 31.12 | 13.51 |
✓ | ✓ | - | 25.38 | 29.18 | 11.97 |
✓ | ✓ | ✓ | 27.76 | 33.93 | 13.88 |
Dataset | Iterations (epochs) | Running Time (s) |
---|---|---|
Caltech101-20 | 200 | 49.69 |
Scene-15 | 500 | 206.85 |
LandUse-21 | 700 | 148.73 |
MNIST-UPS | 200 | 71.39 |
BDGP | 200 | 38.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhu, C.; Li, Z.; Yang, Z.; Gu, W. View-Driven Multi-View Clustering via Contrastive Double-Learning. Entropy 2024, 26, 470. https://doi.org/10.3390/e26060470
Liu S, Zhu C, Li Z, Yang Z, Gu W. View-Driven Multi-View Clustering via Contrastive Double-Learning. Entropy. 2024; 26(6):470. https://doi.org/10.3390/e26060470
Chicago/Turabian StyleLiu, Shengcheng, Changming Zhu, Zishi Li, Zhiyuan Yang, and Wenjie Gu. 2024. "View-Driven Multi-View Clustering via Contrastive Double-Learning" Entropy 26, no. 6: 470. https://doi.org/10.3390/e26060470
APA StyleLiu, S., Zhu, C., Li, Z., Yang, Z., & Gu, W. (2024). View-Driven Multi-View Clustering via Contrastive Double-Learning. Entropy, 26(6), 470. https://doi.org/10.3390/e26060470