Maximum Geometric Quantum Entropy
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
2. Existing Results
2.1. HJW Theorem
2.2. Physically Realizable Ensembles
2.3. Gaussian Adjusted Projected Measure
2.4. Geometric Approach
2.5. Summary
3. Geometric Quantum States
3.1. Quantum State Space
3.2. Observables
3.3. Geometric Quantum States
3.4. GQS as Conditional Probability Measures
3.5. Quantifying Quantum Entropy
3.6. Quantum Information Dimension and Geometric Entropy
4. Principle of Maximum Geometric Quantum Entropy
4.1. Finite Environments:
4.2. Full Support:
4.3. Integer, but Otherwise Arbitrary,
4.4. Noninteger : Fractal Ensembles
5. How Does Emerge?
5.1. Emergence of
5.2. Emergence of
5.3. Stationary Distribution of Some Dynamic
5.4. Emergence of
5.5. Comment on the Generic
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculating the Partition Function
Appendix B. Calculating Lagrange Multipliers
References
- Pathria, R.K.; Beale, P.D. Statistical Mechanics; Elsevier B.V.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Anza, F.; Crutchfield, J.P. Beyond Density Matrices: Geometric Quantum States. Phys. Rev. A 2020, 103, 062218. [Google Scholar] [CrossRef]
- Anza, F.; Crutchfield, J.P. Geometric Quantum Thermodynamics. Phys. Rev. E 2022, 106, 054102. [Google Scholar] [CrossRef]
- Strocchi, F. Complex Coordinates and Quantum Mechanics. Rev. Mod. Phys. 1966, 38, 36–40. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Geometrization of quantum mechanics. Comm. Math. Phys. 1979, 65, 189–201. [Google Scholar] [CrossRef]
- Heslot, A. Quantum mechanics as a classical theory. Phys. Rev. D 1985, 31, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, G.W. Typical states and density matrices. J. Geom. Phys. 1992, 8, 147–162. [Google Scholar] [CrossRef]
- Ashtekar, A.; Schilling, T.A. Geometry of quantum mechanics. In AIP Conference Proceedings; AIP: Melville, NY, USA, 1995; Volume 342, pp. 471–478. [Google Scholar] [CrossRef]
- Ashtekar, A.; Schilling, T.A. Geometrical formulation of quantum mechanics. In On Einstein’s Path; Springer: New York, NY, USA, 1999; pp. 23–65. [Google Scholar] [CrossRef]
- Brody, D.C.; Hughston, L.P. Geometric quantum mechanics. J. Geom. Phys. 2001, 38, 19–53. [Google Scholar] [CrossRef]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States; Cambridge University Press: Cambridge, UK, 2017; p. 419. [Google Scholar] [CrossRef]
- Cariñena, J.F.; Clemente-Gallardo, J.; Marmo, G. Geometrization of quantum mechanics. Theoret. Math. Phys. 2007, 152, 894–903. [Google Scholar] [CrossRef]
- Chruściński, D. Geometric aspects of quantum mechanics and quantum entanglement. J. Phys. Conf. Ser. 2006, 30, 9–16. [Google Scholar] [CrossRef]
- Marmo, G.; Volkert, G.F. Geometrical description of quantum mechanics—transformations and dynamics. Phys. Scr. 2010, 82, 038117. [Google Scholar] [CrossRef]
- Avron, J.; Kenneth, O. An elementary introduction to the geometry of quantum states with pictures. Rev. Math. Phys. 2020, 32, 2030001. [Google Scholar] [CrossRef]
- Pastorello, D. A geometric Hamiltonian description of composite quantum systems and quantum entanglement. Intl. J. Geom. Meth. Mod. Phys. 2015, 12, 1550069. [Google Scholar] [CrossRef]
- Pastorello, D. Geometric Hamiltonian formulation of quantum mechanics in complex projective spaces. Intl. J. Geom. Meth. Mod. Phys. 2015, 12, 1560015. [Google Scholar] [CrossRef]
- Pastorello, D. Geometric Hamiltonian quantum mechanics and applications. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1630017. [Google Scholar] [CrossRef]
- Clemente-Gallardo, J.; Marmo, G. The Ehrenfest picture and the geometry of quantum mechanics. Il Nuovo C. C 2013, 3, 35–52. [Google Scholar] [CrossRef]
- Hughston, L.P.; Jozsa, R.; Wootters, W.K. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 1993, 183, 14–18. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Vaccaro, J.A. Inequivalence of pure state ensembles for Open Quantum Systems: The preferred ensembles are those that are physically realizable. Phys. Rev. Lett. 2001, 87, 240402. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghi, N. On the Distribution of the Wave Function for Systems in Thermal Equilibrium. J. Stat. Phys. 2006, 125, 1193–1221. [Google Scholar] [CrossRef]
- Brody, D.C.; Hughston, L.P. Information content for quantum states. J. Math. Phys. 2000, 41, 2586–2592. [Google Scholar] [CrossRef]
- Karasik, R.I.; Wiseman, H.M. How Many Bits Does It Take to Track an Open Quantum System? Phys. Rev. Lett. 2011, 106, 020406. [Google Scholar] [CrossRef] [PubMed]
- Schroedinger. The exhcange of energy in wave mechanics. Ann. Der Phys. 1927, 387, 257–264. [Google Scholar]
- Schrödinger, E. Statistical Thermodynamics; Dover Publications: New York, NY, USA, 1989; p. 95. [Google Scholar]
- Walecka. Fundamentals of Statistical Mechanics. Manuscript and Notes by Felix Bloch; Stanford University Press: Stanford, CA, USA, 1989. [Google Scholar]
- Goldstein, S.; Lebowitz, J.L.; Mastrodonato, C.; Tumulka, R.; Zanghi, N. Universal Probability Distribution for the Wave Function of a Quantum System Entangled with its Environment. Commun. Math. Phys. 2016, 342, 965–988. [Google Scholar] [CrossRef]
- Reimann, P. Typicality of Pure States Randomly Sampled According to the Gaussian Adjusted Projected Measure. J. Stat. Phys. 2008, 132, 921–935. [Google Scholar] [CrossRef]
- Anza, F.; Crutchfield, J.P. Quantum Information Dimension and Geometric Entropy. Phys. Rev. X Quatum 2022, 3, 020355. [Google Scholar] [CrossRef]
- Pollard, D. A User’s Guide to Measure Theoretic Probability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kolmogorov, A. Foundations of the Theory of Probability; Chelsea Publishing Company: Chelsea, MI, USA, 1933. [Google Scholar]
- Vourdas. Quantum systems with finite Hilbert spaces. Rep. Prog. Phys. 2004, 67, 267. [Google Scholar] [CrossRef]
- Bengtsson. Three ways to look at Mutually Unbiased Bases. AIP Conf. Proc. 2007, 889, 40–51. [Google Scholar]
- Lawrence, J.; Brukner, Č.; Zeilinger, A. Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 2002, 65, 032320. [Google Scholar] [CrossRef]
- Gordon-Rodriguez, E.; Loaiza-Ganem, G.; Cunningham, J. The continuous categorical: A novel simplex-valued exponential family. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, 8 June 2020; pp. 3637–3647. [Google Scholar]
- Anza, F.; Gogolin, C.; Huber, M. Eigenstate Thermalization for Degenerate Observables. Phys. Rev. Lett. 2018, 120, 150603. [Google Scholar] [CrossRef]
- Neumann, J.v. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik. Z. Phys. 1929, 57, 30–70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anza, F.; Crutchfield, J.P. Maximum Geometric Quantum Entropy. Entropy 2024, 26, 225. https://doi.org/10.3390/e26030225
Anza F, Crutchfield JP. Maximum Geometric Quantum Entropy. Entropy. 2024; 26(3):225. https://doi.org/10.3390/e26030225
Chicago/Turabian StyleAnza, Fabio, and James P. Crutchfield. 2024. "Maximum Geometric Quantum Entropy" Entropy 26, no. 3: 225. https://doi.org/10.3390/e26030225