Particle Physics and Cosmology Intertwined
Abstract
:1. Introduction
2. Gravitational Imprint on Particle Physics at the Electroweak Scale
3. Hidden Sectors Intertwine Particle Physics and Cosmology
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Elementary Particle Theory; Svartholm, N., Ed.; Almquist and Wiksells: Stockholm, Sweden, 1969; p. 367. [Google Scholar]
- ’t Hooft, G. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl. Phys. B 1971, 35, 167–188. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 1931, 74, 81–82. [Google Scholar] [CrossRef]
- Burbidge, M.E.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Primordial Helium Abundance and the Primordial Fireball. 2. Astrophys. J. 1966, 146, 542–552. [Google Scholar] [CrossRef]
- Dienes, K.R. String theory and the path to unification: A Review of recent developments. Phys. Rep. 1997, 287, 447–525. [Google Scholar] [CrossRef]
- Nath, P.; Perez, P.F. Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 2007, 441, 191–317. [Google Scholar] [CrossRef]
- Ibrahim, T.; Nath, P. CP Violation From Standard Model to Strings. Rev. Mod. Phys. 2008, 80, 577–631. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R.; Nutricati, L.A. Running of gauge couplings in string theory. Phys. Rev. D 2023, 107, 126019. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R. Calculating the Higgs mass in string theory. Phys. Rev. D 2021, 104, 126032. [Google Scholar] [CrossRef]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Berglund, P.; Conlon, J.P.; Quevedo, F. Systematics of moduli stabilisation in Calabi-Yau flux compactifications. J. High Energy Phys. 2005, 2005, 7. [Google Scholar] [CrossRef]
- Halverson, J.; Long, C.; Nath, P. Ultralight axion in supersymmetry and strings and cosmology at small scales. Phys. Rev. D 2017, 96, 056025. [Google Scholar] [CrossRef]
- Goldberg, H. Constraint on the Photino Mass from Cosmology. Phys. Rev. Lett. 1983, 50, 1419, In Erratum Phys. Rev. Lett. 2009, 103, 099905.. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Nath, P. SUSY mass spectrum in SU(5) supergravity grand unification. Phys. Rev. Lett. 1992, 69, 725–728. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Arnowitt, R.L.; Nath, P. Locally Supersymmetric Grand Unification. Phys. Rev. Lett. 1982, 49, 970. [Google Scholar] [CrossRef]
- Nath, P.; Arnowitt, R.L.; Chamseddine, A.H. Gauge Hierarchy in Supergravity Guts. Nucl. Phys. B 1983, 227, 121–133. [Google Scholar] [CrossRef]
- Barbieri, R.; Ferrara, S.; Savoy, C. Gauge Models with Spontaneously Broken Local Supersymmetry. Phys. Lett. B 1982, 119, 343. [Google Scholar] [CrossRef]
- Hall, L.J.; Lykken, J.D.; Weinberg, S. Supergravity as the Messenger of Supersymmetry Breaking. Phys. Rev. D 1983, 27, 2359–2378. [Google Scholar] [CrossRef]
- Ibanez, L.E.; Ross, G.G. SU(2)-L x U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts. Phys. Lett. B 1982, 110, 215–220. [Google Scholar] [CrossRef]
- Aguillard, D.P.; Albahri, T.; Allspach, D.; Anisenkov, A.; Badgley, K.; Baeßler, S.; Bailey, I.; Bailey, L.; Baranov, V.A.; Barlas-Yucel, E.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. Phys. Rev. Lett. 2023, 131, 161802. [Google Scholar] [CrossRef] [PubMed]
- Aboubrahim, A.; Klasen, M.; Nath, P. What the Fermilab muon g−2 experiment tells us about discovering supersymmetry at high luminosity and high energy upgrades to the LHC. Phys. Rev. D 2021, 104, 035039. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H. Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape. Phys. Lett. B 2021, 820, 136480. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. The new “MUON G-2” result and supersymmetry. Eur. Phys. J. C 2021, 81, 1114. [Google Scholar] [CrossRef]
- Yuan, T.C.; Arnowitt, R.L.; Chamseddine, A.H.; Nath, P. Supersymmetric Electroweak Effects on G-2 (mu). Z. Phys. C 1984, 26, 407. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.N.; Hoelbling, C.; Katz, S.D.; Lellouch, L.; Lippert, T.; Miura, K.; Parato, L.; Szabo, K.K.; et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 2021, 593, 51–55. [Google Scholar] [CrossRef]
- Patt, B.; Wilczek, F. Higgs-field portal into hidden sectors. arXiv 2006, arXiv:hep-ph/0605188. [Google Scholar]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Holdom, B. Oblique electroweak corrections and an extra gauge boson. Phys. Lett. B 1991, 259, 329–334. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. A Stueckelberg extension of the standard model. Phys. Lett. B 2004, 586, 366–372. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. A Supersymmetric Stueckelberg U(1) extension of the MSSM. J. High Energy Phys. 2004, 2004, 005. [Google Scholar] [CrossRef]
- Feldman, D.; Liu, Z.; Nath, P. The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector. Phys. Rev. D 2007, 75, 115001. [Google Scholar] [CrossRef]
- Du, M.; Liu, Z.; Nath, P. CDF W mass anomaly with a Stueckelberg-Higgs portal. Phys. Lett. B 2022, 834, 137454. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Feng, W.Z.; Nath, P.; Wang, Z.Y. Self-interacting hidden sector dark matter, small scale galaxy structure anomalies, and a dark force. Phys. Rev. D 2021, 103, 075014. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Feng, W.Z.; Nath, P.; Wang, Z.Y. Hidden sectors and a multi-temperature universe. arXiv 2021, arXiv:2106.06494. [Google Scholar]
- Aboubrahim, A.; Nath, P. A tower of hidden sectors: A general treatment and physics implications. J. High Energy Phys. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Li, J.; Nath, P. Big bang initial conditions and self-interacting hidden dark matter. Phys. Rev. D 2023, 108, 115008. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Altakach, M.M.; Klasen, M.; Nath, P.; Wang, Z.Y. Combined constraints on dark photons and discovery prospects at the LHC and the Forward Physics Facility. J. High Energy Phys. 2023, 2023, 182. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117–122. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Nath, P. Supersymmetric 10d Low-energy Limit of Superstring Theory. Phys. Rev. D 1986, 34, 3769. [Google Scholar] [CrossRef] [PubMed]
- Romans, L.J.; Warner, N.P. Some Supersymmetric Counterparts of the Lorentz Chern-simons Term. Nucl. Phys. B 1986, 273, 320–332. [Google Scholar] [CrossRef]
- Nishino, H.; Gates, S.J., Jr. Manifestly Supersymmetric Extensions of (Curvature)2 Terms in Six-dimensional N=2 Supergravity. Phys. Lett. B 1986, 173, 417–422. [Google Scholar] [CrossRef]
- Bergshoeff, E.; Salam, A.; Sezgin, E. Supersymmetric R2 Actions, Conformal Invariance and Lorentz Chern-simons Term in Six-dimensions and Ten-dimensions. Nucl. Phys. B 1987, 279, 659–683. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. Aspects of the Stueckelberg extension. J. High Energy Phys. 2005, 2005, 069. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. How Stueckelberg extends the standard model and the MSSM. In PASCOS 2004: Part I: Particles, Strings and Cosmology; Part II: Themes in Unification—The Pran Nath Festschrift; World Scientific: Singapore, 2005; pp. 437–447. [Google Scholar] [CrossRef]
- Feldman, D.; Kors, B.; Nath, P. Extra-weakly Interacting Dark Matter. Phys. Rev. D 2007, 75, 023503. [Google Scholar] [CrossRef]
- Cheung, K.; Yuan, T.C. Hidden fermion as milli-charged dark matter in Stueckelberg Z- prime model. J. High Energy Phys. 2007, 2007, 120. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, In Erratum Astron. Astrophys. 2021, 652, C4.. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Gehrlein, J.; Pierre, M. A testable hidden-sector model for Dark Matter and neutrino masses. J. High Energy Phys. 2020, 2020, 068. [Google Scholar] [CrossRef]
- Escudero, M.; Hooper, D.; Krnjaic, G.; Pierre, M. Cosmology with A Very Light Lμ − Lτ Gauge Boson. J. High Energy Phys. 2019, 2019, 071. [Google Scholar] [CrossRef]
- Fernandez-Martinez, E.; Pierre, M.; Pinsard, E.; Rosauro-Alcaraz, S. Inverse Seesaw, dark matter and the Hubble tension. Eur. Phys. J. C 2021, 81, 954. [Google Scholar] [CrossRef]
- Escudero, M.; Witte, S.J. The hubble tension as a hint of leptogenesis and neutrino mass generation. Eur. Phys. J. C 2021, 81, 515. [Google Scholar] [CrossRef]
- Mangano, G.; Miele, G.; Pastor, S.; Pinto, T.; Pisanti, O.; Serpico, P.D. Relic neutrino decoupling including flavor oscillations. Nucl. Phys. B 2005, 729, 221–234. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Klasen, M.; Nath, P. Analyzing the Hubble tension through hidden sector dynamics in the early universe. J. Cosmol. Astropart. Phys. 2022, 4, 42. [Google Scholar] [CrossRef]
- Vagnozzi, S. Seven Hints That Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension. Universe 2023, 9, 393. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. [Google Scholar] [CrossRef]
- Valdez, G.A.C.; Quintanilla, C.; García-Aspeitia, M.A.; Hernández-Almada, A.; Motta, V. Constraining über gravity with recent observations and studying the H0 problem. Eur. Phys. J. C 2023, 83, 442. [Google Scholar] [CrossRef]
- Zhou, Z.; Mu, Y.; Liu, G.; Xu, L.; Lu, J. Equality scale-based and sound horizon-based analysis of the Hubble tension. Phys. Rev. D 2023, 107, 063536. [Google Scholar] [CrossRef]
- Sobotka, A.C.; Erickcek, A.L.; Smith, T.L. Was entropy conserved between BBN and recombination? Phys. Rev. D 2023, 107, 023525. [Google Scholar] [CrossRef]
- Duan, W.F.; Li, S.P.; Li, X.Q.; Yang, Y.D. Linking anomalies to Hubble tension via a single right-handed neutrino. Chin. Phys. C 2023, 47, 033102. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef]
- Hills, R.; Kulkarni, G.; Meerburg, P.D.; Puchwein, E. Concerns about modelling of the EDGES data. Nature 2018, 564, E32–E34. [Google Scholar] [CrossRef]
- Cohen, A.; Fialkov, A.; Barkana, R. Charting the Parameter Space of the 21-cm Power Spectrum. Mon. Not. R. Astron. Soc. 2018, 478, 2193–2217. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Loeb, A. A small amount of mini-charged dark matter could cool the baryons in the early Universe. Nature 2018, 557, 684. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Dvorkin, C.; Loeb, A. 21-cm Fluctuations from Charged Dark Matter. Phys. Rev. Lett. 2018, 121, 121301. [Google Scholar] [CrossRef]
- Halder, A.; Pandey, M. Probing the effects of primordial black holes on 21-cm EDGES signal along with interacting dark energy and dark matter–baryon scattering. Mon. Not. R. Astron. Soc. 2021, 508, 3446–3454. [Google Scholar] [CrossRef]
- Liu, H.; Outmezguine, N.J.; Redigolo, D.; Volansky, T. Reviving Millicharged Dark Matter for 21-cm Cosmology. Phys. Rev. D 2019, 100, 123011. [Google Scholar] [CrossRef]
- Berlin, A.; Hooper, D.; Krnjaic, G.; McDermott, S.D. Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly. Phys. Rev. Lett. 2018, 121, 011102. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Holder, G. Enhanced global signal of neutral hydrogen due to excess radiation at cosmic dawn. Astrophys. J. Lett. 2018, 858, L17. [Google Scholar] [CrossRef]
- Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 2018, 555, 71–74. [Google Scholar] [CrossRef]
- Barkana, R.; Outmezguine, N.J.; Redigolo, D.; Volansky, T. Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D 2018, 98, 103005. [Google Scholar] [CrossRef]
- Fraser, S.; Hektor, A.; Hütsi, G.; Kannike, K.; Marzo, C.; Marzola, L.; Spethmann, C.; Racioppi, A.; Raidal, M.; Vaskonen, V.; et al. The EDGES 21 cm Anomaly and Properties of Dark Matter. Phys. Lett. B 2018, 785, 159–164. [Google Scholar] [CrossRef]
- Pospelov, M.; Pradler, J.; Ruderman, J.T.; Urbano, A. Room for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background. Phys. Rev. Lett. 2018, 121, 031103. [Google Scholar] [CrossRef]
- Moroi, T.; Nakayama, K.; Tang, Y. Axion-photon conversion and effects on 21 cm observation. Phys. Lett. B 2018, 783, 301–305. [Google Scholar] [CrossRef]
- Fialkov, A.; Barkana, R. Signature of Excess Radio Background in the 21-cm Global Signal and Power Spectrum. Mon. Not. R. Astron. Soc. 2019, 486, 1763–1773. [Google Scholar] [CrossRef]
- Choi, K.; Seong, H.; Yun, S. Axion-photon-dark photon oscillation and its implication for 21 cm observation. Phys. Rev. D 2020, 102, 075024. [Google Scholar] [CrossRef]
- Creque-Sarbinowski, C.; Ji, L.; Kovetz, E.D.; Kamionkowski, M. Direct millicharged dark matter cannot explain the EDGES signal. Phys. Rev. D 2019, 100, 023528. [Google Scholar] [CrossRef]
- Kovetz, E.D.; Poulin, V.; Gluscevic, V.; Boddy, K.K.; Barkana, R.; Kamionkowski, M. Tighter limits on dark matter explanations of the anomalous EDGES 21 cm signal. Phys. Rev. D 2018, 98, 103529. [Google Scholar] [CrossRef]
- Bondarenko, K.; Pradler, J.; Sokolenko, A. Constraining dark photons and their connection to 21 cm cosmology with CMB data. Phys. Lett. B 2020, 805, 135420. [Google Scholar] [CrossRef]
- Lanfranchi, G.; Pospelov, M.; Schuster, P. The Search for Feebly Interacting Particles. Ann. Rev. Nucl. Part. Sci. 2021, 71, 279–313. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Kovetz, E.D.; Ali-Haïmoud, Y. Heating of Baryons due to Scattering with Dark Matter during the Dark Ages. Phys. Rev. D 2015, 92, 083528. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Nath, P.; Wang, Z.Y. A cosmologically consistent millicharged dark matter solution to the EDGES anomaly of possible string theory origin. J. High Energy Phys. 2021, 2021, 148. [Google Scholar] [CrossRef]
- Paul, D.; Dey, A.; Banik, A.D.; Pal, S. Confronting global 21-cm signal with Z3 symmetric dark matter models. J. Cosmol. Astropart. Phys. 2023, 11, 15. [Google Scholar] [CrossRef]
- Barkana, R.; Fialkov, A.; Liu, H.; Outmezguine, N.J. Anticipating a new physics signal in upcoming 21-cm power spectrum observations. Phys. Rev. D 2023, 108, 063503. [Google Scholar] [CrossRef]
- Halder, A.; Pandey, S.S.; Majumdar, A.S. Global 21-cm brightness temperature in viscous dark energy models. J. Cosmol. Astropart. Phys. 2022, 10, 49. [Google Scholar] [CrossRef]
- Wu, S.; Xu, S.; Zheng, S. Freeze-in dark matter in EDGES 21-cm signal. Chin. Phys. C 2023, 47, 095101. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Adam, R.; Ade, P.A.; Aghanim, N.; Akrami, Y.; Alves, M.I.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; et al. Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 2016, 594, A1. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bowens-Rubin, R.; Brevik, J.A.; et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. Phys. Rev. Lett. 2016, 116, 031302. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo - Nambu-Goldstone bosons. Phys. Rev. Lett. 1990, 65, 3233–3236. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.C.; Bond, J.R.; Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation: Particle physics models, power law spectra for large scale structure, and constraints from COBE. Phys. Rev. D 1993, 47, 426–455. [Google Scholar] [CrossRef] [PubMed]
- Banks, T.; Dine, M.; Fox, P.J.; Gorbatov, E. On the possibility of large axion decay constants. J. Cosmol. Astropart. Phys. 2003, 2003, 1. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in String Theory. J. High Energy Phys. 2006, 2006, 51. [Google Scholar] [CrossRef]
- Kim, J.E.; Nilles, H.P.; Peloso, M. Completing natural inflation. J. Cosmol. Astropart. Phys. 2005, 2005, 5. [Google Scholar] [CrossRef]
- Long, C.; McAllister, L.; McGuirk, P. Aligned Natural Inflation in String Theory. Phys. Rev. D 2014, 90, 023501. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Enhancement of the Axion Decay Constant in Inflation and the Weak Gravity Conjecture. arXiv 2019, arXiv:1906.02764. [Google Scholar]
- Pajer, E.; Peloso, M. A review of Axion Inflation in the era of Planck. Class. Quant. Grav. 2013, 30, 214002. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Evidence for Inflation in an Axion Landscape. J. High Energy Phys. 2018, 2018, 121. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Supersymmetric Dirac-Born-Infeld Axionic Inflation and Non-Gaussianity. J. High Energy Phys. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, P. Particle Physics and Cosmology Intertwined. Entropy 2024, 26, 110. https://doi.org/10.3390/e26020110
Nath P. Particle Physics and Cosmology Intertwined. Entropy. 2024; 26(2):110. https://doi.org/10.3390/e26020110
Chicago/Turabian StyleNath, Pran. 2024. "Particle Physics and Cosmology Intertwined" Entropy 26, no. 2: 110. https://doi.org/10.3390/e26020110
APA StyleNath, P. (2024). Particle Physics and Cosmology Intertwined. Entropy, 26(2), 110. https://doi.org/10.3390/e26020110