Particle Physics and Cosmology Intertwined
Abstract
1. Introduction
2. Gravitational Imprint on Particle Physics at the Electroweak Scale
3. Hidden Sectors Intertwine Particle Physics and Cosmology
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Elementary Particle Theory; Svartholm, N., Ed.; Almquist and Wiksells: Stockholm, Sweden, 1969; p. 367. [Google Scholar]
- ’t Hooft, G. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl. Phys. B 1971, 35, 167–188. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 1931, 74, 81–82. [Google Scholar] [CrossRef]
- Burbidge, M.E.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Peebles, P.J.E. Primordial Helium Abundance and the Primordial Fireball. 2. Astrophys. J. 1966, 146, 542–552. [Google Scholar] [CrossRef]
- Dienes, K.R. String theory and the path to unification: A Review of recent developments. Phys. Rep. 1997, 287, 447–525. [Google Scholar] [CrossRef]
- Nath, P.; Perez, P.F. Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 2007, 441, 191–317. [Google Scholar] [CrossRef]
- Ibrahim, T.; Nath, P. CP Violation From Standard Model to Strings. Rev. Mod. Phys. 2008, 80, 577–631. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R.; Nutricati, L.A. Running of gauge couplings in string theory. Phys. Rev. D 2023, 107, 126019. [Google Scholar] [CrossRef]
- Abel, S.; Dienes, K.R. Calculating the Higgs mass in string theory. Phys. Rev. D 2021, 104, 126032. [Google Scholar] [CrossRef]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Berglund, P.; Conlon, J.P.; Quevedo, F. Systematics of moduli stabilisation in Calabi-Yau flux compactifications. J. High Energy Phys. 2005, 2005, 7. [Google Scholar] [CrossRef]
- Halverson, J.; Long, C.; Nath, P. Ultralight axion in supersymmetry and strings and cosmology at small scales. Phys. Rev. D 2017, 96, 056025. [Google Scholar] [CrossRef]
- Goldberg, H. Constraint on the Photino Mass from Cosmology. Phys. Rev. Lett. 1983, 50, 1419, In Erratum Phys. Rev. Lett. 2009, 103, 099905.. [Google Scholar] [CrossRef]
- Arnowitt, R.L.; Nath, P. SUSY mass spectrum in SU(5) supergravity grand unification. Phys. Rev. Lett. 1992, 69, 725–728. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Arnowitt, R.L.; Nath, P. Locally Supersymmetric Grand Unification. Phys. Rev. Lett. 1982, 49, 970. [Google Scholar] [CrossRef]
- Nath, P.; Arnowitt, R.L.; Chamseddine, A.H. Gauge Hierarchy in Supergravity Guts. Nucl. Phys. B 1983, 227, 121–133. [Google Scholar] [CrossRef]
- Barbieri, R.; Ferrara, S.; Savoy, C. Gauge Models with Spontaneously Broken Local Supersymmetry. Phys. Lett. B 1982, 119, 343. [Google Scholar] [CrossRef]
- Hall, L.J.; Lykken, J.D.; Weinberg, S. Supergravity as the Messenger of Supersymmetry Breaking. Phys. Rev. D 1983, 27, 2359–2378. [Google Scholar] [CrossRef]
- Ibanez, L.E.; Ross, G.G. SU(2)-L x U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts. Phys. Lett. B 1982, 110, 215–220. [Google Scholar] [CrossRef]
- Aguillard, D.P.; Albahri, T.; Allspach, D.; Anisenkov, A.; Badgley, K.; Baeßler, S.; Bailey, I.; Bailey, L.; Baranov, V.A.; Barlas-Yucel, E.; et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. Phys. Rev. Lett. 2023, 131, 161802. [Google Scholar] [CrossRef] [PubMed]
- Aboubrahim, A.; Klasen, M.; Nath, P. What the Fermilab muon g−2 experiment tells us about discovering supersymmetry at high luminosity and high energy upgrades to the LHC. Phys. Rev. D 2021, 104, 035039. [Google Scholar] [CrossRef]
- Baer, H.; Barger, V.; Serce, H. Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape. Phys. Lett. B 2021, 820, 136480. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. The new “MUON G-2” result and supersymmetry. Eur. Phys. J. C 2021, 81, 1114. [Google Scholar] [CrossRef]
- Yuan, T.C.; Arnowitt, R.L.; Chamseddine, A.H.; Nath, P. Supersymmetric Electroweak Effects on G-2 (mu). Z. Phys. C 1984, 26, 407. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.N.; Hoelbling, C.; Katz, S.D.; Lellouch, L.; Lippert, T.; Miura, K.; Parato, L.; Szabo, K.K.; et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 2021, 593, 51–55. [Google Scholar] [CrossRef]
- Patt, B.; Wilczek, F. Higgs-field portal into hidden sectors. arXiv 2006, arXiv:hep-ph/0605188. [Google Scholar]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Holdom, B. Oblique electroweak corrections and an extra gauge boson. Phys. Lett. B 1991, 259, 329–334. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. A Stueckelberg extension of the standard model. Phys. Lett. B 2004, 586, 366–372. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. A Supersymmetric Stueckelberg U(1) extension of the MSSM. J. High Energy Phys. 2004, 2004, 005. [Google Scholar] [CrossRef]
- Feldman, D.; Liu, Z.; Nath, P. The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector. Phys. Rev. D 2007, 75, 115001. [Google Scholar] [CrossRef]
- Du, M.; Liu, Z.; Nath, P. CDF W mass anomaly with a Stueckelberg-Higgs portal. Phys. Lett. B 2022, 834, 137454. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Feng, W.Z.; Nath, P.; Wang, Z.Y. Self-interacting hidden sector dark matter, small scale galaxy structure anomalies, and a dark force. Phys. Rev. D 2021, 103, 075014. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Feng, W.Z.; Nath, P.; Wang, Z.Y. Hidden sectors and a multi-temperature universe. arXiv 2021, arXiv:2106.06494. [Google Scholar]
- Aboubrahim, A.; Nath, P. A tower of hidden sectors: A general treatment and physics implications. J. High Energy Phys. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Li, J.; Nath, P. Big bang initial conditions and self-interacting hidden dark matter. Phys. Rev. D 2023, 108, 115008. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Altakach, M.M.; Klasen, M.; Nath, P.; Wang, Z.Y. Combined constraints on dark photons and discovery prospects at the LHC and the Forward Physics Facility. J. High Energy Phys. 2023, 2023, 182. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117–122. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Nath, P. Supersymmetric 10d Low-energy Limit of Superstring Theory. Phys. Rev. D 1986, 34, 3769. [Google Scholar] [CrossRef] [PubMed]
- Romans, L.J.; Warner, N.P. Some Supersymmetric Counterparts of the Lorentz Chern-simons Term. Nucl. Phys. B 1986, 273, 320–332. [Google Scholar] [CrossRef]
- Nishino, H.; Gates, S.J., Jr. Manifestly Supersymmetric Extensions of (Curvature)2 Terms in Six-dimensional N=2 Supergravity. Phys. Lett. B 1986, 173, 417–422. [Google Scholar] [CrossRef]
- Bergshoeff, E.; Salam, A.; Sezgin, E. Supersymmetric R2 Actions, Conformal Invariance and Lorentz Chern-simons Term in Six-dimensions and Ten-dimensions. Nucl. Phys. B 1987, 279, 659–683. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. Aspects of the Stueckelberg extension. J. High Energy Phys. 2005, 2005, 069. [Google Scholar] [CrossRef]
- Kors, B.; Nath, P. How Stueckelberg extends the standard model and the MSSM. In PASCOS 2004: Part I: Particles, Strings and Cosmology; Part II: Themes in Unification—The Pran Nath Festschrift; World Scientific: Singapore, 2005; pp. 437–447. [Google Scholar] [CrossRef]
- Feldman, D.; Kors, B.; Nath, P. Extra-weakly Interacting Dark Matter. Phys. Rev. D 2007, 75, 023503. [Google Scholar] [CrossRef]
- Cheung, K.; Yuan, T.C. Hidden fermion as milli-charged dark matter in Stueckelberg Z- prime model. J. High Energy Phys. 2007, 2007, 120. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, In Erratum Astron. Astrophys. 2021, 652, C4.. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Gehrlein, J.; Pierre, M. A testable hidden-sector model for Dark Matter and neutrino masses. J. High Energy Phys. 2020, 2020, 068. [Google Scholar] [CrossRef]
- Escudero, M.; Hooper, D.; Krnjaic, G.; Pierre, M. Cosmology with A Very Light Lμ − Lτ Gauge Boson. J. High Energy Phys. 2019, 2019, 071. [Google Scholar] [CrossRef]
- Fernandez-Martinez, E.; Pierre, M.; Pinsard, E.; Rosauro-Alcaraz, S. Inverse Seesaw, dark matter and the Hubble tension. Eur. Phys. J. C 2021, 81, 954. [Google Scholar] [CrossRef]
- Escudero, M.; Witte, S.J. The hubble tension as a hint of leptogenesis and neutrino mass generation. Eur. Phys. J. C 2021, 81, 515. [Google Scholar] [CrossRef]
- Mangano, G.; Miele, G.; Pastor, S.; Pinto, T.; Pisanti, O.; Serpico, P.D. Relic neutrino decoupling including flavor oscillations. Nucl. Phys. B 2005, 729, 221–234. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Klasen, M.; Nath, P. Analyzing the Hubble tension through hidden sector dynamics in the early universe. J. Cosmol. Astropart. Phys. 2022, 4, 42. [Google Scholar] [CrossRef]
- Vagnozzi, S. Seven Hints That Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension. Universe 2023, 9, 393. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. [Google Scholar] [CrossRef]
- Valdez, G.A.C.; Quintanilla, C.; García-Aspeitia, M.A.; Hernández-Almada, A.; Motta, V. Constraining über gravity with recent observations and studying the H0 problem. Eur. Phys. J. C 2023, 83, 442. [Google Scholar] [CrossRef]
- Zhou, Z.; Mu, Y.; Liu, G.; Xu, L.; Lu, J. Equality scale-based and sound horizon-based analysis of the Hubble tension. Phys. Rev. D 2023, 107, 063536. [Google Scholar] [CrossRef]
- Sobotka, A.C.; Erickcek, A.L.; Smith, T.L. Was entropy conserved between BBN and recombination? Phys. Rev. D 2023, 107, 023525. [Google Scholar] [CrossRef]
- Duan, W.F.; Li, S.P.; Li, X.Q.; Yang, Y.D. Linking anomalies to Hubble tension via a single right-handed neutrino. Chin. Phys. C 2023, 47, 033102. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef]
- Hills, R.; Kulkarni, G.; Meerburg, P.D.; Puchwein, E. Concerns about modelling of the EDGES data. Nature 2018, 564, E32–E34. [Google Scholar] [CrossRef]
- Cohen, A.; Fialkov, A.; Barkana, R. Charting the Parameter Space of the 21-cm Power Spectrum. Mon. Not. R. Astron. Soc. 2018, 478, 2193–2217. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Loeb, A. A small amount of mini-charged dark matter could cool the baryons in the early Universe. Nature 2018, 557, 684. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Dvorkin, C.; Loeb, A. 21-cm Fluctuations from Charged Dark Matter. Phys. Rev. Lett. 2018, 121, 121301. [Google Scholar] [CrossRef]
- Halder, A.; Pandey, M. Probing the effects of primordial black holes on 21-cm EDGES signal along with interacting dark energy and dark matter–baryon scattering. Mon. Not. R. Astron. Soc. 2021, 508, 3446–3454. [Google Scholar] [CrossRef]
- Liu, H.; Outmezguine, N.J.; Redigolo, D.; Volansky, T. Reviving Millicharged Dark Matter for 21-cm Cosmology. Phys. Rev. D 2019, 100, 123011. [Google Scholar] [CrossRef]
- Berlin, A.; Hooper, D.; Krnjaic, G.; McDermott, S.D. Severely Constraining Dark Matter Interpretations of the 21-cm Anomaly. Phys. Rev. Lett. 2018, 121, 011102. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Holder, G. Enhanced global signal of neutral hydrogen due to excess radiation at cosmic dawn. Astrophys. J. Lett. 2018, 858, L17. [Google Scholar] [CrossRef]
- Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 2018, 555, 71–74. [Google Scholar] [CrossRef]
- Barkana, R.; Outmezguine, N.J.; Redigolo, D.; Volansky, T. Strong constraints on light dark matter interpretation of the EDGES signal. Phys. Rev. D 2018, 98, 103005. [Google Scholar] [CrossRef]
- Fraser, S.; Hektor, A.; Hütsi, G.; Kannike, K.; Marzo, C.; Marzola, L.; Spethmann, C.; Racioppi, A.; Raidal, M.; Vaskonen, V.; et al. The EDGES 21 cm Anomaly and Properties of Dark Matter. Phys. Lett. B 2018, 785, 159–164. [Google Scholar] [CrossRef]
- Pospelov, M.; Pradler, J.; Ruderman, J.T.; Urbano, A. Room for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background. Phys. Rev. Lett. 2018, 121, 031103. [Google Scholar] [CrossRef]
- Moroi, T.; Nakayama, K.; Tang, Y. Axion-photon conversion and effects on 21 cm observation. Phys. Lett. B 2018, 783, 301–305. [Google Scholar] [CrossRef]
- Fialkov, A.; Barkana, R. Signature of Excess Radio Background in the 21-cm Global Signal and Power Spectrum. Mon. Not. R. Astron. Soc. 2019, 486, 1763–1773. [Google Scholar] [CrossRef]
- Choi, K.; Seong, H.; Yun, S. Axion-photon-dark photon oscillation and its implication for 21 cm observation. Phys. Rev. D 2020, 102, 075024. [Google Scholar] [CrossRef]
- Creque-Sarbinowski, C.; Ji, L.; Kovetz, E.D.; Kamionkowski, M. Direct millicharged dark matter cannot explain the EDGES signal. Phys. Rev. D 2019, 100, 023528. [Google Scholar] [CrossRef]
- Kovetz, E.D.; Poulin, V.; Gluscevic, V.; Boddy, K.K.; Barkana, R.; Kamionkowski, M. Tighter limits on dark matter explanations of the anomalous EDGES 21 cm signal. Phys. Rev. D 2018, 98, 103529. [Google Scholar] [CrossRef]
- Bondarenko, K.; Pradler, J.; Sokolenko, A. Constraining dark photons and their connection to 21 cm cosmology with CMB data. Phys. Lett. B 2020, 805, 135420. [Google Scholar] [CrossRef]
- Lanfranchi, G.; Pospelov, M.; Schuster, P. The Search for Feebly Interacting Particles. Ann. Rev. Nucl. Part. Sci. 2021, 71, 279–313. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Kovetz, E.D.; Ali-Haïmoud, Y. Heating of Baryons due to Scattering with Dark Matter during the Dark Ages. Phys. Rev. D 2015, 92, 083528. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Nath, P.; Wang, Z.Y. A cosmologically consistent millicharged dark matter solution to the EDGES anomaly of possible string theory origin. J. High Energy Phys. 2021, 2021, 148. [Google Scholar] [CrossRef]
- Paul, D.; Dey, A.; Banik, A.D.; Pal, S. Confronting global 21-cm signal with Z3 symmetric dark matter models. J. Cosmol. Astropart. Phys. 2023, 11, 15. [Google Scholar] [CrossRef]
- Barkana, R.; Fialkov, A.; Liu, H.; Outmezguine, N.J. Anticipating a new physics signal in upcoming 21-cm power spectrum observations. Phys. Rev. D 2023, 108, 063503. [Google Scholar] [CrossRef]
- Halder, A.; Pandey, S.S.; Majumdar, A.S. Global 21-cm brightness temperature in viscous dark energy models. J. Cosmol. Astropart. Phys. 2022, 10, 49. [Google Scholar] [CrossRef]
- Wu, S.; Xu, S.; Zheng, S. Freeze-in dark matter in EDGES 21-cm signal. Chin. Phys. C 2023, 47, 095101. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Adam, R.; Ade, P.A.; Aghanim, N.; Akrami, Y.; Alves, M.I.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; et al. Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 2016, 594, A1. [Google Scholar] [CrossRef]
- Ade, P.A.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bowens-Rubin, R.; Brevik, J.A.; et al. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. Phys. Rev. Lett. 2016, 116, 031302. [Google Scholar] [CrossRef]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo - Nambu-Goldstone bosons. Phys. Rev. Lett. 1990, 65, 3233–3236. [Google Scholar] [CrossRef] [PubMed]
- Adams, F.C.; Bond, J.R.; Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation: Particle physics models, power law spectra for large scale structure, and constraints from COBE. Phys. Rev. D 1993, 47, 426–455. [Google Scholar] [CrossRef] [PubMed]
- Banks, T.; Dine, M.; Fox, P.J.; Gorbatov, E. On the possibility of large axion decay constants. J. Cosmol. Astropart. Phys. 2003, 2003, 1. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions in String Theory. J. High Energy Phys. 2006, 2006, 51. [Google Scholar] [CrossRef]
- Kim, J.E.; Nilles, H.P.; Peloso, M. Completing natural inflation. J. Cosmol. Astropart. Phys. 2005, 2005, 5. [Google Scholar] [CrossRef]
- Long, C.; McAllister, L.; McGuirk, P. Aligned Natural Inflation in String Theory. Phys. Rev. D 2014, 90, 023501. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Enhancement of the Axion Decay Constant in Inflation and the Weak Gravity Conjecture. arXiv 2019, arXiv:1906.02764. [Google Scholar]
- Pajer, E.; Peloso, M. A review of Axion Inflation in the era of Planck. Class. Quant. Grav. 2013, 30, 214002. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Evidence for Inflation in an Axion Landscape. J. High Energy Phys. 2018, 2018, 121. [Google Scholar] [CrossRef]
- Nath, P.; Piskunov, M. Supersymmetric Dirac-Born-Infeld Axionic Inflation and Non-Gaussianity. J. High Energy Phys. 2019, 2019, 34. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, P. Particle Physics and Cosmology Intertwined. Entropy 2024, 26, 110. https://doi.org/10.3390/e26020110
Nath P. Particle Physics and Cosmology Intertwined. Entropy. 2024; 26(2):110. https://doi.org/10.3390/e26020110
Chicago/Turabian StyleNath, Pran. 2024. "Particle Physics and Cosmology Intertwined" Entropy 26, no. 2: 110. https://doi.org/10.3390/e26020110
APA StyleNath, P. (2024). Particle Physics and Cosmology Intertwined. Entropy, 26(2), 110. https://doi.org/10.3390/e26020110