Deriving Three-Outcome Permutationally Invariant Bell Inequalities
Abstract
1. Introduction
2. Bell Scenario and the Local Polytope
2.1. Multipartite Bell Experiment
2.2. Local Deterministic Strategies and Characterization of the Local Polytope
2.3. Projections onto Low-Dimensional Subspaces
3. Deriving New Multipartite Bell Inequalities
3.1. Inferring Families of 3-Outcome PIBIs
3.2. Data-Driven Derivation of 3-Outcome PIBIs
Benchmarking the Outer Approximation against
- 1.
- Select two (random) orthonormal directions in the 14-dimensional space (cf. Equation (11)), defining the plane used to slice the local polytope.
- 2.
- Set as the origin the point inside the local polytope, which corresponds to the probability distribution of maximal entropy with and for all .
- 3.
- Select a direction on the plane parametrized by an angle as , noting that the discretization of need not be uniform to better outline the boundary.
- 4.
- Obtain the boundary points:
- For , find the max feasible along direction by inputting in SdP Equation (24). The term is to obtain the constraint . Then, one finds the boundary point ,
- For , find the max feasible such that can be written as a linear combination of the vertices of . We do so via the following linear program:
- 5.
- We repeat steps 3 and 4 for several values of until a full sweep across the plane has been completed.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419. [Google Scholar] [CrossRef]
- Frérot, I.; Fadel, M.; Lewenstein, M. Probing quantum correlations in many-body systems: A review of scalable methods. Rep. Progress Phys. 2023, 86, 114001. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.S. On the einstein podolsky rosen paradox. Physics 1964, 1, 195. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880. [Google Scholar] [CrossRef]
- Babai, L.; Fortnow, L.; Lund, C. Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1991, 1, 3. [Google Scholar] [CrossRef]
- Gühne, O.; Toth, G.; Hyllus, P.; Briegel, H.J. Bell inequalities for graph states. Phys. Lett. 2005, 95, 120405. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Gühne, O.; Briegel, H.J. Two-setting Bell inequalities for graph states. Phys. Rev. A—At. Mol. Opt. Phys. 2006, 73, 022303. [Google Scholar] [CrossRef]
- Santos, R.; Saha, D.; Baccari, F.; Augusiak, R. Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing. New J. Phys. 2023, 25, 063018. [Google Scholar] [CrossRef]
- Hein, M.; Eisert, J.; Briegel, H.J. Multiparty entanglement in graph states. Phys. Rev. A—At. Mol. Opt. Phys. 2004, 69, 062311. [Google Scholar] [CrossRef]
- Augusiak, R.; Salavrakos, A.; Tura, J.; Acin, A. Bell inequalities tailored to the Greenberger-Horne-Zeilinger states of arbitrary local dimension. New J. Phys. 2019, 21, 113001. [Google Scholar] [CrossRef]
- Sarkar, S.; Augusiak, R. Self-testing of multipartite Greenberger-Horne-Zeilinger states of arbitrary local dimension with arbitrary number of measurements per party. Phys. Rev. A 2022, 105, 032416. [Google Scholar] [CrossRef]
- Makuta, O.; Augusiak, R. Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism. New J. Phys. 2021, 23, 043042. [Google Scholar] [CrossRef]
- Baccari, F.; Augusiak, R.; Supić, I.; Acin, A. Scalable bell inequalities for qubit graph states and robust self-testing. Phys. Rev. Lett. 2020, 125, 260507. [Google Scholar] [CrossRef]
- Designolle, S.; Vértesi, T.; Pokutta, S. Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms. Phys. Rev. A 2024, 109, 022205. [Google Scholar] [CrossRef]
- Gilbert, E.G. An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Control 1966, 4, 61. [Google Scholar] [CrossRef]
- Plodzień, M.; Lewenstein, M.; Witkowska, E.; Chwedenczuk, J. One-axis twisting as a method of generating many-body Bell correlations. Phys. Rev. Lett. 2022, 129, 250402. [Google Scholar] [CrossRef] [PubMed]
- Plodzien, M.; Chwedericzuk, J.; Lewenstein, M. Inherent quantum resources in the stationary spin chains. arXiv 2024, arXiv:2405.16974. [Google Scholar]
- Plodzień, M.; Wasak, T.; Witkowska, E.; Lewenstein, M.; Chwedenczuk, J. Generation of scalable many-body Bell correlations in spin chains with short-range two-body interactions. Phys. Rev. Res. 2024, 6, 023050. [Google Scholar] [CrossRef]
- Chwedenczuk, J. Many-body Bell inequalities for bosonic qubits. SciPost Phys. Core 2022, 5, 025. [Google Scholar] [CrossRef]
- Mermin, N.D. Quantum mysteries revisited. Phys. Rev. Lett. 1990, 65, 1838. [Google Scholar] [CrossRef]
- Belinskii, A.; Klyshko, D.N. Interference of light and Bell’s theorem. Physics-Uspekhi 1993, 36, 653. [Google Scholar] [CrossRef]
- Aolita, L.; Gallego, R.; Cabello, A.; Acin, A. Fully nonlocal quantum correlations. Phys. Lett. 2012, 108, 10040. [Google Scholar] [CrossRef] [PubMed]
- Navascués, M.; Singh, S.; Acín, A. Connector tensor networks: A renormalization-type approach to quantum certification. Phys. Rev. X 2020, 10, 021064. [Google Scholar] [CrossRef]
- Hu, M.; Vallée, E.; Seynnaeve, T.; Emonts, P.; Tura, J. Characterizing Translation-Invariant Bell Inequalities using Tropical Algebra and Graph Polytopes. arXiv 2024, arXiv:2407.08783. [Google Scholar]
- Hu, M.; Tura, J. Tropical contraction of tensor networks as a Bell inequality optimization toolset. arXiv 2022, arXiv:2208.02798. [Google Scholar]
- Tura, J.; Sainz, A.B.; Vértesi, T.; Acin, A.; Lewenstein, M.; Augusiak, R. Translationally invariant multipartite Bell inequalities involving only two-body correlators. J. Phys. A Math. Theor. 2014, 47, 424024. [Google Scholar] [CrossRef]
- Wang, Z.; Singh, S.; Navascués, M. Entanglement and nonlocality in infinite 1D systems. Phys. Rev. Lett. 2017, 118, 230401. [Google Scholar] [CrossRef]
- Wang, Z.; Navascués, M. Two-dimensional translation-invariant probability distributions: Approximations, characterizations and no-go theorems. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170822. [Google Scholar] [CrossRef]
- Tura, J.; Augusiak, R.; Sainz, A.B.; Vértesi, T.; Lewen-stein, M.; Acin, A. Detecting nonlocality in many-body quantum states. Science 2014, 344, 1256. [Google Scholar] [CrossRef]
- Wagner, S.; Schmied, R.; Fadel, M.; Treutlein, P.; San-gouard, N.; Bancal, J.-D. Bell Correlations in a Many-Body System with Finite Statistics. Phys. Rev. Lett. 2017, 119, 170403. [Google Scholar] [CrossRef]
- Baccari, F.; Tura, J.; Fadel, M.; Aloy, A.; Bancal, J.-D.; Sangouard, N.; Lewenstein, M.; Acin, A.; Augusiak, R. Bell correlation depth in many-body systems. Phys. Rev. A 2019, 100, 022121. [Google Scholar] [CrossRef]
- Fadel, M.; Hernandez-Cuenca, S. Symmetrized holographic entropy cone. Phys. Rev. D 2022, 105, 086008. [Google Scholar] [CrossRef]
- Guo, J.; Tura, J.; He, Q.; Fadel, M. Detecting Bell Correlations in Multipartite Non-Gaussian Spin States. Phys. Rev. Lett. 2023, 131, 070201. [Google Scholar] [CrossRef] [PubMed]
- Bancal, J.-D.; Gisin, N.; Pironio, S. Looking for symmetric Bell inequalities. J. Phys. A Math. Theor. 2010, 43, 385303. [Google Scholar] [CrossRef]
- Bancal, J.-D.; Branciard, C.; Brunner, N.; Gisin, N.; Liang, Y.-C. A framework for the study of symmetric full-correlation Bell-like inequalities. J. Phys. A Math. Theor. 2012, 45, 125301. [Google Scholar] [CrossRef]
- Fadel, M.; Tura, J. Bell correlations at finite temperature. Quantum 2018, 2, 107. [Google Scholar] [CrossRef]
- Piga, A.; Aloy, A.; Lewenstein, M.; Frérot, I. Bell Correlations at Ising Quantum Critical Points. Phys. Rev. Lett. 2019, 123, 170604. [Google Scholar] [CrossRef]
- Fröwis, F.; Fadel, M.; Treutlein, P.; Gisin, N.; Brunner, N. Does large quantum Fisher information imply Bell correlations? Phys. Rev. A 2019, 99, 040101. [Google Scholar] [CrossRef]
- Schmied, R.; Bancal, J.-D.; Allard, B.; Fadel, M.; Scarani, V.; Treutlein, P.; Sangouard, N. Bell correlations in a Bose-Einstein condensate. Science 2016, 352, 441. [Google Scholar] [CrossRef]
- Engelsen, N.J.; Krishnakumar, R.; Hosten, O.; Kasevich, M.A. Bell correlations in spin-squeezed states of 500,000 atoms. Phys. Rev. Lett. 2017, 118, 140401. [Google Scholar] [CrossRef]
- Alsina, D.; Cervera, A.; Goyeneche, D.; Latorre, J.I.; Zyczkowski, K. Operational approach to Bell inequalities: Application to qutrits. Phys. Rev. A 2016, 94, 032102. [Google Scholar] [CrossRef]
- Müller-Rigat, G.; Aloy, A.; Lewenstein, M.; Frèrot, I. Inferring Nonlinear Many-Body Bell Inequalities From Average Two-Body Correlations: Systematic Approach for Arbitrary Spin-j Ensembles. PRX Quantum 2021, 2, 030329. [Google Scholar] [CrossRef]
- Lipkin, H.; Meshkov, N.; Glick, A. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nuclear Phys. 1965, 62, 188. [Google Scholar] [CrossRef]
- Meshkov, N.; Glick, A.; Lipkin, H. Validity of many-body approximation methods for a solvable model: (II). Linearization procedures. Nuclear Phys. 1965, 62, 199. [Google Scholar] [CrossRef]
- Glick, A.; Lipkin, H.; Meshkov, N. Validity of many-body approximation methods for a solvable model: (III). Diagram summations. Nuclear Phys. 1965, 62, 211. [Google Scholar] [CrossRef]
- Meredith, D.C.; Koonin, S.E.; Zirnbauer, M.R. Quantum chaos in a schematic shell model. Phys. Rev. A 1988, 37, 3499. [Google Scholar] [CrossRef]
- Law, C.K.; Pu, H.; Bigelow, N.P. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. 1998, 81, 5257. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. A 1983, 93, 464. [Google Scholar] [CrossRef]
- Haldane, F.D.M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 1983, 50, 1153. [Google Scholar] [CrossRef]
- Affleck, I.; Kennedy, T.; Lieb, E.H.; Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 1987, 59, 799. [Google Scholar] [CrossRef]
- Gnutzmann, S.; Haake, F.; Kus, M. Quantum chaos of SU3 observables. J. Phys. A Math. Gen. 1999, 33, 143. [Google Scholar] [CrossRef]
- Hamley, C.D.; Gerving, C.S.; Hoang, T.M.; Bookjans, E.M.; Chapman, M.S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 2012, 8, 305. [Google Scholar] [CrossRef]
- Kitzinger, J.; Meng, X.; Fadel, M.; Ivannikov, V.; Nemoto, K.; Munro, W.J.; Byrnes, T. Bell correlations in a split two-mode-squeezed Bose-Einstein condensate. Phys. Rev. 2021, A104, 043323. [Google Scholar] [CrossRef]
- Luo, X.-Y.; Zou, Y.-Q.; Wu, L.-N.; Liu, Q.; Han, M.-F.; Tey, M.K.; You, L. Deterministic entanglement generation from driving through quantum phase transitions. Science 2017, 355, 620. [Google Scholar] [CrossRef]
- Fine, A. Hidden Variables, Joint Probability, and the Bell Inequalities. Phys. Rev. Lett. 1982, 48, 291. [Google Scholar] [CrossRef]
- Chazelle, B. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom. 1993, 10, 377. [Google Scholar] [CrossRef]
- Pitowsky, I.; Svozil, K. Optimal tests of quantum nonlocality. Phys. Rev. A 2001, 64, 014102. [Google Scholar] [CrossRef]
- Tura, J.; Augusiak, R.; Sainz, A.; Lücke, B.; Klempt, C.; Lewenstein, M.; Acín, A. Nonlocality in many-body quantum systems detected with two-body correlators. Ann. Phys. 2015, 362, 370. [Google Scholar] [CrossRef]
- Fukuda, K. cdd/cdd+ Reference Manual. Inst. Oper. Res. ETH-Zentrum 1997, 91, 111. [Google Scholar]
- Aloy, A.; Müller-Rigat, G.; Lewenstein, M.; Tura, J.; Fadel, M. Bell inequalities as a tool to probe quantumchaos. arXiv 2024, arXiv:2406.11791. [Google Scholar] [CrossRef]
- Müller-Rigat, G.; Aloy, A.; Lewenstein, M.; Fadel, M.; Tura, J. Three-outcome multipartite bell inequal-ities: Applications to dimnension witnessing and spin-nematic squeezing in many-body systems. arXiv 2024, arXiv:2406.12823. [Google Scholar] [CrossRef]
- Aloy, A.; Fadel, M.; Tura, J. The quantum marginal problem for symmetric states: Applications to variational optimization, nonlocality and self-testing. New J. Phys. 2021, 23, 033026. [Google Scholar] [CrossRef]
- Fadel, M.; Tura, J. Bounding the Set of Classical Correlations of a Many-Body System. Phys. Rev. Lett. 2017, 119, 230402. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming; Version 2.1; CVX: San Ramon, CA, USA, 2014; Available online: http://cvxr.com/cvx (accessed on 23 September 2024).
- Skrzypczyk, P.; Cavalcanti, D. Semidefinite Programming in Quantum Information Science; IOP Publishing: Bristol, UK, 2023; pp. 2053–2563. [Google Scholar] [CrossRef]
- Tavakoli, A.; Pozas-Kerstjens, A.; Brown, P.; Araujo, M. Semidefinite programming relaxations for quantum correlations. arXiv 2023, arXiv:2307.02551. [Google Scholar]
- Lasserre, J.B. Moments, Positive Polynomials and Their Applications; Imperial College Press: London, UK, 2009; Available online: https://www.ebook.de/de/product/27808945/jean_bernard_lasserre_moments_positive_polynomials_and_their_applications.html (accessed on 23 September 2024).
- Gouveia, J.; Parrilo, P.A.; Thomas, R.R. Theta bodies for polynomial ideals. SIAM J. Opt. 2010, 20, 2097. [Google Scholar] [CrossRef]
- Gouveia, J.; Thomas, R.R. Semidefinite Optimization and Conver Algebraic Geometry; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2012; pp. 293–340. [Google Scholar] [CrossRef]
- Alt, H.W. An Application-oriented Introduction. In Linear Functional Analysis; Springer: London, UK, 2016. [Google Scholar]
LDS Label | (0|0) | (1|0) | (2|0) | (0|1) | (1|1) | (2|1) |
---|---|---|---|---|---|---|
# 0 | 1 | 0 | 0 | 1 | 0 | 0 |
# 1 | 1 | 0 | 0 | 0 | 1 | 0 |
# 2 | 1 | 0 | 0 | 0 | 0 | 1 |
# 3 | 0 | 1 | 0 | 1 | 0 | 0 |
# 4 | 0 | 1 | 0 | 0 | 1 | 0 |
# 5 | 0 | 1 | 0 | 0 | 0 | 1 |
# 6 | 0 | 0 | 1 | 1 | 0 | 0 |
# 7 | 0 | 0 | 1 | 0 | 1 | 0 |
# 8 | 0 | 0 | 1 | 0 | 0 | 1 |
3PIBI Label | ||||||
---|---|---|---|---|---|---|
# 1 | 1 | 1 | 0 | −2 | 0 | 0 |
# 2 | 1 | 1 | −2 | −2 | 2 | 0 |
# 3 | −2 | 1 | 2 | 2 | 0 | 4 |
# 4 | −6 | 1 | 4 | 4 | 2 | 12 |
# 5 | −6 | 1 | 4 | 0 | 0 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloy, A.; Müller-Rigat, G.; Tura, J.; Fadel, M. Deriving Three-Outcome Permutationally Invariant Bell Inequalities. Entropy 2024, 26, 816. https://doi.org/10.3390/e26100816
Aloy A, Müller-Rigat G, Tura J, Fadel M. Deriving Three-Outcome Permutationally Invariant Bell Inequalities. Entropy. 2024; 26(10):816. https://doi.org/10.3390/e26100816
Chicago/Turabian StyleAloy, Albert, Guillem Müller-Rigat, Jordi Tura, and Matteo Fadel. 2024. "Deriving Three-Outcome Permutationally Invariant Bell Inequalities" Entropy 26, no. 10: 816. https://doi.org/10.3390/e26100816
APA StyleAloy, A., Müller-Rigat, G., Tura, J., & Fadel, M. (2024). Deriving Three-Outcome Permutationally Invariant Bell Inequalities. Entropy, 26(10), 816. https://doi.org/10.3390/e26100816