Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group
Abstract
:1. Introduction
2. The IWH Group and Coordinate-Free Right-Invariant Motion
2.1. Observables and Infinitesimal Positive Transformation
2.2. SPQM and the IWH Group
2.3. Haar Measure, Dirac Delta, and Kraus-Operator Distribution Function
2.4. Diffusion Equation in Terms of Right-Invariant Derivatives
2.5. Sample-Path SDEs in Terms of Right-Invariant One-Forms
3. The IWH Group and Two Coordinate Systems
3.1. Usual Elements of Semisimple Lie Group Theory
3.2. Harish-Chandra Decomposition and SDEs as a Proof by Transfinite Induction
3.3. Cartan Decomposition and Various Transformations
3.4. Solving the SDEs
3.5. Solving Most of the FPK Diffusion Equation
- The ruler r (or purity parameter) is ballistic, which means that collapses exponentially to in the standard quantization. More generally, collapses exponentially at late times to an outer product of coherent states, ;
- The dependence on the future and past phase-space parameters, and , is only in their difference;
- The distribution of the difference spreads out very slowly for small times as and then for long times becomes normal diffusion, with ;
- There is a center normalization, , that increases over time.
3.6. POVM as an Alternative Perspective on the Quantum
4. Reduced Distribution Functions and Feynman-Kac Path Integrals
4.1. Feynman-Kac Formulas
4.2. Normalized Harish-Chandra Reduced Distribution Function and Modified Path-Integration Measure
4.3. Diffusion Equation for Harish-Chandra Reduced Distribution Function
4.4. Normalized Harish-Chandra Reduced Distribution Function from Its Path Integral
5. Concluding Remarks. The Stochastic Trinity
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Exterior Derivatives of the Right-Invariant Basis
Appendix B. Global Coordinate Transformation between Cartan and Harish-Chandra Coordinates
Appendix C. Solution for Harish-Chandra Center Coordinate
Appendix D. Local Transformations between Cartan-Coordinate and Right-Invariant Frames
Appendix E. Local Transformations between Harish-Chandra-Coordinate and Right-Invariant Frames
Appendix F. Delta Functions and the Singularity in Cartan coordinates
Appendix G. Riccati Equations for the Three Moments
References
- Klauder, J.R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 1960, 11, 123–168. [Google Scholar] [CrossRef]
- Perelomov, A. Generalized Coherent States and Their Applications; Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Zhang, W.-M.; Fang, D.H.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867–927. [Google Scholar] [CrossRef]
- Brif, C.; Mann, A. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 1999, 59, 971–987. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Glauber, R.J. Optical coherence and photon statistics. In Quantum Optics and Electronics; DeWitt, C., Blandin, A., Cohen-Tannoudji, C., Eds.; Gordon and Breach: Philadelphia, PA, USA, 1965; pp. 65–85. [Google Scholar]
- Massar, S.; Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 1995, 74, 1259–1263. [Google Scholar] [CrossRef]
- Wiener, N. The average of an analytic functional. Proc. Natl. Acad. Sci. USA 1921, 7, 253–260. [Google Scholar] [CrossRef]
- Wiener, N. The average of an analytic functional and the Brownian movement. Proc. Natl. Acad. Sci. USA 1921, 7, 294–298. [Google Scholar] [CrossRef]
- Wiener, N. The average value of a functional. Proc. Lond. Math. Soc. 1924, s2-22, 454–467. [Google Scholar] [CrossRef]
- Feynman, R.P. Feynman’s PhD Thesis: A New Approach to Quantum Theory; Brown, L.M., Ed.; World Scientific: Singapore, 2005. [Google Scholar]
- Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
- Kac, M. On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 1949, 65, 1–13. [Google Scholar] [CrossRef]
- Kac, M. Probability and Related Topics in Physical Sciences; Lectures in Applied Mathematics; American Mathematical Society: Providence, RI, USA, 1959; Volume I.A. [Google Scholar]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals (Emended Edition); Dover: Mineola, NY, USA, 2010. [Google Scholar]
- Bourbaki, N. Elements of Mathematics. Integration II, Chapters 7–9; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Chaichian, M.; Demichev, A. Path Integrals in Physics. Volume I: Stochastic Processes and Quantum Mechanics; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2001. [Google Scholar]
- Matsubara, T. A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 1955, 14, 351–378. [Google Scholar] [CrossRef]
- Ludwig, G. Foundations of Quantum Mechanics I; Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Ludwig, G. Foundations of Quantum Mechanics II; Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Schwinger, J. The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 1959, 45, 1542–1553. [Google Scholar] [CrossRef]
- Wigner, E.P. The problem of measurement. Am. J. Phys. 1963, 31, 6–15. [Google Scholar] [CrossRef]
- Jauch, J.M.; Piron, C. Generalized localizability. Helv. Phys. Acta 1967, 40, 559–570. [Google Scholar]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [Google Scholar] [CrossRef]
- Davies, E.B. Quantum Theory of Open Systems; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Kraus, K. States, Effects, and Operations: Fundamental Notions of Quantum Theory; Lecture Notes in Physics; Böhm, A., Dollard, J.D., Wootters, W.K., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 190. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridg, UK, 2000. [Google Scholar]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridg, UK, 2009. [Google Scholar]
- Barchielli, A.; Belavkin, V.P. Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen. 1991, 24, 1495–1514. [Google Scholar] [CrossRef]
- Wiseman, H.M. Quantum Trajectories and Feedback. Ph.D. Thesis, University of Queensland, Brisbane, QLD, Australia, 1994. [Google Scholar]
- Goetsch, P.; Graham, R. Linear stochastic wave equations for continuously measured quantum systems. Phys. Rev. A 1994, 50, 5242–5255. [Google Scholar] [CrossRef]
- Wiseman, H.M. Quantum trajectories and quantum measurement theory. Quantum Semiclass. Opt. J. Eur. Opt. Soc. Part B 1996, 8, 205. [Google Scholar] [CrossRef]
- Jackson, C.S. The photodetector, the heterodyne instrument, and the principle of instrument autonomy. arXiv 2022, arXiv:2210.11100. [Google Scholar]
- Shojaee, E.; Jackson, C.S.; Riofrío, C.A.; Kalev, A.; Deutsch, I.H. Optimal pure-state qubit tomography via sequential weak measurements. Phys. Rev. Lett. 2018, 121, 130404. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.S.; Caves, C.M. How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. I. Spin and the Kraus-operator geometry of SL(2,C). arXiv 2021, arXiv:2107.12396. [Google Scholar]
- Jackson, C.S.; Caves, C.M. Simultaneous measurements of noncommuting observables. Positive transformations and instrumental Lie groups. arXiv 2023, arXiv:2306.06167. [Google Scholar]
- Barchielli, A.; Lanz, L.; Prosperi, G.M. A model for the macroscopic description and continual observations in quantum mechanics. Nuovo Cim. B 1982, 72, 79–121. [Google Scholar] [CrossRef]
- Beard, M. SPQR: A History of Ancient Rome; Liveright: New York, NY, USA, 2015. [Google Scholar]
- Haar, A. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. Second Ser. 1933, 34, 147–169. [Google Scholar] [CrossRef]
- von Neumann, J. Invariant Measures; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Nachbin, L. The Haar Integral; D. Van Nostrand Company, Inc.: New York, NY, USA, 1965. [Google Scholar]
- Knapp, A.W. Lie Groups, Lie Algebras, and Cohomology; Mathematical Notes 34; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Frankel, T. The Geometry of Physics: An Introduction, 3rd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kitaev, A. Notes on (2, ) representations. arXiv 2018, arXiv:1711.08169. [Google Scholar]
- Gilmore, R. Lie Groups, Lie Algebras, and Some of Their Applications; Dover: Mineola, NY, USA, 2002. [Google Scholar]
- Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; Pure and Applied Mathematics; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Barut, A.O.; Raczka, R. Theory of Group Representations and Applications, 2nd revised ed.; World Scientific: Singapore, 1986. [Google Scholar]
- Knapp, A.W. Lie Groups Beyond an Introduction, 2nd ed.; Progress in Mathematics; Birkhäuser: Cham, Switzerland, 2002; Volume 140. [Google Scholar]
- Harish-Chandra. Representations of Semisimple Lie Groups, V. Am. J. Math. 1956, 78, 1–41. [Google Scholar] [CrossRef]
- Knapp, A.W. Representation Theory of Semisimple Lie Groups: An Overview Based on Examples; Princeton Landmarks in Mathematics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Želobenko, D.P. Compact Lie Groups and Their Representations; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1973; Volume 40. [Google Scholar]
- Itô, K. Stochastic differential equations in a differentiable manifold. Nagoya Math. J. 1950, 1, 35–47. [Google Scholar] [CrossRef]
- Itô, K.; McKean, H.P., Jr. Diffusion Processes and Their Sample Paths: Reprint of the 1974 Edition; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Chirikjian, G.S. Stochastic Models, Information Theory, and Lie Groups, Volume I: Classical Results and Geometric Methods; Applied and Numerical Harmonic Analysis; Birkhäuser: Cham, Switzerland, 2009. [Google Scholar]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gardiner, C. Elements of Stochastic Methods; AIP Publishing: Melville, NY, USA, 2021. [Google Scholar]
- Uhlenbeck, G.E.; Ornstein, L.S. On the theory of Brownian motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Srinivas, M.D.; Davies, E.B. Photon counting probabilities in quantum optics. Opt. Acta 1981, 28, 981–996. [Google Scholar] [CrossRef]
- Jacobs, K.; Knight, P.L. Linear quantum trajectories: Applications to continuous projection measurements. Phys. Rev. A 1998, 57, 2301–2310. [Google Scholar] [CrossRef]
- Jacobs, K.; Steck, D.A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 2006, 47, 279–303. [Google Scholar] [CrossRef]
- Martin, L.; Motzoi, F.; Li, H.; Sarovar, M.; Whaley, K.B. Deterministic generation of remote entanglement with active quantum feedback. Phys. Rev. A 2015, 92, 062321. [Google Scholar] [CrossRef]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition; Wheeler, N.A., Ed.; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Arthurs, E.; Kelly, J.L., Jr. On the simultaneous measurement of a pair of conjugate observables. Bell Syst. Tech. J. 1965, 44, 725–729. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M.; Milburn, G.J. Interpretation for a positive P representation. Phys. Rev. A 1991, 43, 1153–1159. [Google Scholar] [CrossRef]
- Poincaré, H. Papers on Topology: Analysis Situs and Its Five Supplements (History of Mathematics); Stillwell, J., Translator; American Mathematical Society: Providence, RI, USA; The London Mathematical Society: London, UK, 2010; Volume 37. [Google Scholar]
- Weyl, H. The Concept of a Riemann Surface, 3rd ed.; Dover: Mineola, NY, USA, 2009. [Google Scholar]
- Bourbaki, N. Elements of Mathematics. Lie Groups and Lie Algebras, Chapters 1–3; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Pontrjagin, L. Topological Groups; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Ali, S.T.; Antoine, J.-P.; Gazeau, J.-P. Coherent States. Wavelets. amd Their Generalizations, 2nd ed.; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Dixmier, J. Enveloping Algebras; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1996; Volume 11. [Google Scholar]
- Chern, S.-S.; Chevalley, C. Élie Cartan and his mathematical work. Bull. Am. Math. Soc. 1952, 58, 157–216. [Google Scholar] [CrossRef]
- Howe, R. “Harish-Chandra: 1923–1983”, Biographical Memoirs of the US National Academy of Sciences. 2011. Available online: www.nasonline.org/publications/biographical-memoirs/ (accessed on 1 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, C.S.; Caves, C.M. Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group. Entropy 2023, 25, 1221. https://doi.org/10.3390/e25081221
Jackson CS, Caves CM. Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group. Entropy. 2023; 25(8):1221. https://doi.org/10.3390/e25081221
Chicago/Turabian StyleJackson, Christopher S., and Carlton M. Caves. 2023. "Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group" Entropy 25, no. 8: 1221. https://doi.org/10.3390/e25081221
APA StyleJackson, C. S., & Caves, C. M. (2023). Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group. Entropy, 25(8), 1221. https://doi.org/10.3390/e25081221