Robust Z-Estimators for Semiparametric Moment Condition Models
Abstract
1. Introduction
2. Minimum Empirical Divergence Estimators
2.1. Statistical Divergences
2.2. Minimum Empirical Divergence Estimators
3. Robust Estimators for Moment Condition Models
3.1. Definitions of New Estimators
3.2. Asymptotic Properties
- (a)
- There exist compact neighbourhoods of and of such that
- (b)
- For any positive ε, the following condition holdswhere .
- (a)
- Both estimators and converge in probability to and , respectively.
- (b)
- The function is on some neighbourhood for all x ( a.s.), and the partial derivatives of order two of the functions are dominated by some -integrable function .
- (c)
- The function is on some neighbourhood for all x ( a.s.), and the partial derivatives of order three of the functions are dominated by some -integrable function .
- (d)
- is finite, and the matrix:with , , and , exists and is invertible.
3.3. Influence Functions and Robustness
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
i.i.d. | independent and identically distributed |
a.c. | absolutely continuous |
GMM | generalized method of moments |
CU | continuous updating |
EL | empirical likelihood |
ET | exponential tilting |
GEL | generalized empirical likelihood |
ETEL | exponentially tilted empirical likelihood |
Appendix A
References
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Hansen, L.; Heaton, J.; Yaron, A. Finite-sample properties of some alternative gmm estimators. J. Bus. Econ. Stat. 1996, 14, 262–280. [Google Scholar]
- Qin, J.; Lawless, J. Empirical likelihood and general estimating equations. Ann. Stat. 1994, 22, 300–325. [Google Scholar] [CrossRef]
- Imbens, G.W. One-step estimators for over-identified generalized method of moments models. Rev. Econ. Stud. 1997, 64, 359–383. [Google Scholar] [CrossRef]
- Kitamura, Y.; Stutzer, M. An information-theoretic alternative to generalized method of moments estimation. Econometrica 1997, 65, 861–874. [Google Scholar] [CrossRef]
- Newey, W.K.; Smith, R.J. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 2004, 72, 219–255. [Google Scholar] [CrossRef]
- Schennach, S.M. Point estimation with exponentially tilted empirical likelihood. Ann. Stat. 2007, 35, 634–672. [Google Scholar] [CrossRef]
- Pardo, L. Statistical Inference Based on Divergence Measures; Chapmann & Hall: London, UK, 2006. [Google Scholar]
- Basu, A.; Shioya, H.; Park, C. Statistical Inference: The Minimum Distance Approach; Chapmann & Hall: London, UK, 2011. [Google Scholar]
- Pardo, L.; Martín, N. Robust procedures for estimating and testing in the framework of divergence measures. Entropy 2021, 23, 430. [Google Scholar] [CrossRef]
- Riani, M.; Atkinson, A.C.; Corbellini, A.; Perrotta, D. Robust regression with density power divergence: Theory, comparisons, and data analysis. Entropy 2020, 22, 399. [Google Scholar] [CrossRef]
- Broniatowski, M.; Keziou, A. Divergences and duality for estimation and test under moment condition models. J. Stat. Plan. Inference 2012, 142, 2554–2573. [Google Scholar] [CrossRef]
- Broniatowski, M.; Keziou, A. Parametric estimation and tests through divergences and the duality technique. J. Multivar. Anal. 2009, 100, 16–36. [Google Scholar] [CrossRef]
- Toma, A.; Broniatowski, M. Dual divergence estimators and tests: Robustness results. J. Multivar. Anal. 2011, 102, 20–36. [Google Scholar] [CrossRef]
- Toma, A.; Leoni-Aubin, S. Robust tests based on dual divergence estimators and saddlepoint approximations. J. Multivar. Anal. 2010, 101, 1143–1155. [Google Scholar] [CrossRef]
- Toma, A. Model selection criteria using divergences. Entropy 2014, 16, 2686–2698. [Google Scholar] [CrossRef]
- Toma, A. Robustness of dual divergence estimators for models satisfying linear constraints. C. R. Math. Acad. Sci. Paris 2013, 351, 311–316. [Google Scholar] [CrossRef]
- Ronchetti, E.; Trojani, F. Robust inference with GMM estimators. J. Econom. 2001, 101, 37–69. [Google Scholar] [CrossRef]
- Lô, S.N.; Ronchetti, E. Robust small sample accurate inference in moment condition models. Comput. Stat. Data Anal. 2012, 56, 3182–3197. [Google Scholar] [CrossRef]
- Felipe, A.; Martín, N.; Miranda, P.; Pardo, L. Testing with exponentially tilted empirical likelihood. Methodol. Comput. Appl. Probab. 2018, 20, 1319–1358. [Google Scholar] [CrossRef]
- Keziou, A.; Toma, A. A robust version of the empirical likelihood estimator. Mathematics 2021, 9, 829. [Google Scholar] [CrossRef]
- Keziou, A.; Toma, A. Robust Empirical Likelihood. In Geometric Science of Information, Proceedings of the 5th International Conference, GSI 2021, Paris, France, 21–23 July 2021; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Rüschendorf, L. On the minimum discrimination information theorem. Stat. Decis. 1984, 263–283. [Google Scholar]
- Cressie, N.; Read, T.R.C. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B 1984, 46, 440–464. [Google Scholar] [CrossRef]
- Broniatowski, M.; Keziou, A. Minimization of ϕ divergences on sets of signed measures. Stud. Sci. Math. Hung. 2006, 43, 403–442. [Google Scholar]
- Hampel, F.R.; Ronchetti, E.; Rousseeuw, P.J.; Stahel, W. Robust Statistics: The Approach Based on Influence Functions; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Ronchetti, E.M.; Huber, P.J. Robust Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, A. Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy 2023, 25, 1013. https://doi.org/10.3390/e25071013
Toma A. Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy. 2023; 25(7):1013. https://doi.org/10.3390/e25071013
Chicago/Turabian StyleToma, Aida. 2023. "Robust Z-Estimators for Semiparametric Moment Condition Models" Entropy 25, no. 7: 1013. https://doi.org/10.3390/e25071013
APA StyleToma, A. (2023). Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy, 25(7), 1013. https://doi.org/10.3390/e25071013