Robust Z-Estimators for Semiparametric Moment Condition Models
Abstract
:1. Introduction
2. Minimum Empirical Divergence Estimators
2.1. Statistical Divergences
2.2. Minimum Empirical Divergence Estimators
3. Robust Estimators for Moment Condition Models
3.1. Definitions of New Estimators
3.2. Asymptotic Properties
- (a)
- There exist compact neighbourhoods of and of such that
- (b)
- For any positive ε, the following condition holdswhere .
- (a)
- Both estimators and converge in probability to and , respectively.
- (b)
- The function is on some neighbourhood for all x ( a.s.), and the partial derivatives of order two of the functions are dominated by some -integrable function .
- (c)
- The function is on some neighbourhood for all x ( a.s.), and the partial derivatives of order three of the functions are dominated by some -integrable function .
- (d)
- is finite, and the matrix:with , , and , exists and is invertible.
3.3. Influence Functions and Robustness
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
i.i.d. | independent and identically distributed |
a.c. | absolutely continuous |
GMM | generalized method of moments |
CU | continuous updating |
EL | empirical likelihood |
ET | exponential tilting |
GEL | generalized empirical likelihood |
ETEL | exponentially tilted empirical likelihood |
Appendix A
References
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Hansen, L.; Heaton, J.; Yaron, A. Finite-sample properties of some alternative gmm estimators. J. Bus. Econ. Stat. 1996, 14, 262–280. [Google Scholar]
- Qin, J.; Lawless, J. Empirical likelihood and general estimating equations. Ann. Stat. 1994, 22, 300–325. [Google Scholar] [CrossRef]
- Imbens, G.W. One-step estimators for over-identified generalized method of moments models. Rev. Econ. Stud. 1997, 64, 359–383. [Google Scholar] [CrossRef]
- Kitamura, Y.; Stutzer, M. An information-theoretic alternative to generalized method of moments estimation. Econometrica 1997, 65, 861–874. [Google Scholar] [CrossRef]
- Newey, W.K.; Smith, R.J. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 2004, 72, 219–255. [Google Scholar] [CrossRef] [Green Version]
- Schennach, S.M. Point estimation with exponentially tilted empirical likelihood. Ann. Stat. 2007, 35, 634–672. [Google Scholar] [CrossRef] [Green Version]
- Pardo, L. Statistical Inference Based on Divergence Measures; Chapmann & Hall: London, UK, 2006. [Google Scholar]
- Basu, A.; Shioya, H.; Park, C. Statistical Inference: The Minimum Distance Approach; Chapmann & Hall: London, UK, 2011. [Google Scholar]
- Pardo, L.; Martín, N. Robust procedures for estimating and testing in the framework of divergence measures. Entropy 2021, 23, 430. [Google Scholar] [CrossRef]
- Riani, M.; Atkinson, A.C.; Corbellini, A.; Perrotta, D. Robust regression with density power divergence: Theory, comparisons, and data analysis. Entropy 2020, 22, 399. [Google Scholar] [CrossRef] [Green Version]
- Broniatowski, M.; Keziou, A. Divergences and duality for estimation and test under moment condition models. J. Stat. Plan. Inference 2012, 142, 2554–2573. [Google Scholar] [CrossRef] [Green Version]
- Broniatowski, M.; Keziou, A. Parametric estimation and tests through divergences and the duality technique. J. Multivar. Anal. 2009, 100, 16–36. [Google Scholar] [CrossRef] [Green Version]
- Toma, A.; Broniatowski, M. Dual divergence estimators and tests: Robustness results. J. Multivar. Anal. 2011, 102, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Toma, A.; Leoni-Aubin, S. Robust tests based on dual divergence estimators and saddlepoint approximations. J. Multivar. Anal. 2010, 101, 1143–1155. [Google Scholar] [CrossRef] [Green Version]
- Toma, A. Model selection criteria using divergences. Entropy 2014, 16, 2686–2698. [Google Scholar] [CrossRef] [Green Version]
- Toma, A. Robustness of dual divergence estimators for models satisfying linear constraints. C. R. Math. Acad. Sci. Paris 2013, 351, 311–316. [Google Scholar] [CrossRef]
- Ronchetti, E.; Trojani, F. Robust inference with GMM estimators. J. Econom. 2001, 101, 37–69. [Google Scholar] [CrossRef] [Green Version]
- Lô, S.N.; Ronchetti, E. Robust small sample accurate inference in moment condition models. Comput. Stat. Data Anal. 2012, 56, 3182–3197. [Google Scholar] [CrossRef]
- Felipe, A.; Martín, N.; Miranda, P.; Pardo, L. Testing with exponentially tilted empirical likelihood. Methodol. Comput. Appl. Probab. 2018, 20, 1319–1358. [Google Scholar] [CrossRef]
- Keziou, A.; Toma, A. A robust version of the empirical likelihood estimator. Mathematics 2021, 9, 829. [Google Scholar] [CrossRef]
- Keziou, A.; Toma, A. Robust Empirical Likelihood. In Geometric Science of Information, Proceedings of the 5th International Conference, GSI 2021, Paris, France, 21–23 July 2021; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Rüschendorf, L. On the minimum discrimination information theorem. Stat. Decis. 1984, 263–283. [Google Scholar]
- Cressie, N.; Read, T.R.C. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B 1984, 46, 440–464. [Google Scholar] [CrossRef]
- Broniatowski, M.; Keziou, A. Minimization of ϕ divergences on sets of signed measures. Stud. Sci. Math. Hung. 2006, 43, 403–442. [Google Scholar]
- Hampel, F.R.; Ronchetti, E.; Rousseeuw, P.J.; Stahel, W. Robust Statistics: The Approach Based on Influence Functions; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Ronchetti, E.M.; Huber, P.J. Robust Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, A. Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy 2023, 25, 1013. https://doi.org/10.3390/e25071013
Toma A. Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy. 2023; 25(7):1013. https://doi.org/10.3390/e25071013
Chicago/Turabian StyleToma, Aida. 2023. "Robust Z-Estimators for Semiparametric Moment Condition Models" Entropy 25, no. 7: 1013. https://doi.org/10.3390/e25071013
APA StyleToma, A. (2023). Robust Z-Estimators for Semiparametric Moment Condition Models. Entropy, 25(7), 1013. https://doi.org/10.3390/e25071013