Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Psychophysiological Assessment (Protocol for Relaxation)
2.3. Data Acquisition and Pre-Processing Process of Photoplethysmographic and Respiratory Time Series in COVID-19 Survivors
2.4. Data Analysis
2.4.1. Breathing Rate Variability (BRV)
2.4.2. Pulse Rate Variability (PRV)
2.4.3. Pulse–Respiration Quotient (PRQ)
Sample Entropy (SampEn)
Fuzzy Entropy (FuzzyEn)
2.5. Statistical Analysis
3. Results
3.1. Breathing Rate Variability
3.2. Pulse Rate Variability
3.2.1. Linear Features
3.2.2. Nonlinear Features
3.3. Pulse–Respiration Quotient (PRQ) Variability
3.4. Comorbidity-Based Analysis
4. Discussion
4.1. Breathing Rate Variability
4.2. Pulse Rate Variability
4.3. Pulse–Respiration Quotient
4.4. Comorbidity-Based Analysis
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Index | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Comparison | p |
---|---|---|---|---|---|---|
Mean BR | 18.398 ± 4.16 | 18.498 ± 3.81 | 18.249 ± 4.13 | 9.303 ± 3.59 | ||
P1–P4 | 2.21 × 10−18 * | |||||
P2–P4 | 5.69 × 10−20 * | |||||
P3–P4 | 2.66 × 10−18 * | |||||
SDBB | 0.424 ± 0.25 | 0.395 ± 0.26 | 0.450 ± 0.31 | 2.077 ± 1.32 | ||
P1–P4 | 2.69 × 10−11 + | |||||
P2–P4 | 1.85 × 10−11 + | |||||
P3–P4 | 1.60 × 10−10 + | |||||
RMSSD | 0.436 ± 0.25 | 0.417 ± 0.28 | 0.436 ± 0.27 | 2.488 ± 1.99 | ||
P1–P4 | 4.74 × 10−9 + | |||||
P2–P4 | 3.45 × 10−9 + | |||||
P3–P4 | 3.97 × 10−9 + |
Index | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Comparison | p |
---|---|---|---|---|---|---|
Mean PP | 820.60 ± 129.22 | 808.54 ± 125.42 | 821.75 ± 135.57 | 840.91 ± 137.29 | ||
P1–P4 | 2.59 × 10−4 * | |||||
P2–P4 | 3.29 × 10−7 * | |||||
P3–P4 | 3.48 × 10−4 * | |||||
SDNN | 22.49 ± 15.82 | 21.23 ± 14.79 | 23.56 ± 17.25 | 37.99 ± 23.76 | ||
P1–P4 | 4.52 × 10−9 + | |||||
P2–P4 | 3.55 × 10−9 + | |||||
P3–P4 | 2.47 × 10−8 + | |||||
RMSSD | 23.90 ± 21.15 | 21.99 ± 19.25 | 24.35 ± 22.74 | 28.25 ± 20.23 | ||
P1–P4 | 0.0013 + | |||||
P2–P4 | 1.85 × 10−6 + | |||||
P3–P4 | 3.91 × 10−4 + | |||||
LF power (nu) | 42.63 ± 17.71 | 47.80 ± 19.87 | 44.25 ± 20.18 | 73.85 ± 19.47 | ||
P1–P4 | 7.19 × 10−8 + | |||||
P2–P4 | 2.25 × 10−6 + | |||||
P3–P4 | 6.74 × 10−7 + | |||||
HF power (nu) | 44.29 ± 22.10 | 39.04 ± 21.26 | 43.98 ± 22.58 | 20.28 ± 16.81 | ||
P1–P4 | 6.98 × 10−9 * | |||||
P2–P4 | 5.24 × 10−6 * | |||||
P3–P4 | 5.16 × 10−7 * | |||||
LF/HF ratio | 1.65 ± 1.92 | 2.21 ± 2.52 | 1.88 ± 2.12 | 7.06 ± 5.37 | ||
P1–P4 | 5.75 × 10−8 + | |||||
P2–P4 | 2.14 × 10−6 + | |||||
P3–P4 | 2.08 × 10−7 + | |||||
SampEn | 1.91 ± 0.27 | 1.84 ± 0.24 | 1.86 ± 0.28 | 1.41 ± 0.31 | ||
P1–P4 | 2.83 × 10−11 * | |||||
P2–P4 | 4.42 × 10−11 * | |||||
P3–P4 | 5.93 × 10−10 * | |||||
0.95 ± 0.29 | 0.96 ± 0.32 | 0.96 ± 0.32 | 1.33 ± 0.29 | |||
P1–P4 | 9.30 × 10−10 * | |||||
P2–P4 | 4.11 × 10−9 * | |||||
P3–P4 | 6.63 × 10−9 * | |||||
0.47 ± 0.18 | 0.52 ± 0.2 | 0.51 ± 0.19 | 0.32 ± 0.17 | |||
P1–P4 | 2.60× 10−6 * | |||||
P2–P4 | 1.83 × 10−7 * | |||||
P3–P4 | 6.85 × 10−7 * | |||||
Mean HR | 75.00 ± 11.47 | 76.04 ± 11.34 | 75.00 ± 11.6 | 73.44 ± 11.55 | ||
P1–P4 | 6.27 × 10−4 * | |||||
P2–P4 | 1.89 × 10−6 * | |||||
P3–P4 | 9.10 × 10−4 * |
Index | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Comparison | p |
---|---|---|---|---|---|---|
Mean PRQ | 4.37 ± 1.102 | 4.38 ± 1.12 | 4.44 ± 1.267 | 10.83 ± 3.875 | ||
P1–P4 | 1.34 × 10−9 + | |||||
P2–P4 | 1.18 × 10−9 + | |||||
P3–P4 | 1.34 × 10−9 + | |||||
SD—PRQ | 0.538 ± 0.30 | 0.535 ± 0.372 | 0.583 ± 0.399 | 2.49 ± 1.523 | ||
P1–P4 | 1.18 × 10−9 + | |||||
P2–P4 | 1.11 × 10−9 + | |||||
P3–P4 | 2.19 × 10−9 + | |||||
SampEn | 0.973 ± 0.348 | 0.99 ± 0.36 | 0.995 ± 0.419 | 0.563 ± 0.24 | ||
P1–P4 | 5.70 × 10−9 * | |||||
P2–P4 | 3.10 × 10−9 * | |||||
P3–P4 | 1.21 × 10−7 * | |||||
FuzzyEn | 0.824 ± 0.309 | 0.825 ± 0.315 | 0.821 ± 0.352 | 0.471 ± 0.205 | ||
P1–P4 | 3.10 × 10−8 + | |||||
P2–P4 | 1.46 × 10−7 + | |||||
P3–P4 | 2.60 × 10−6 + |
References
- Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Mol. Pharm. 2021, 18, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Malik, J.; Ahmed, S.; Shinde, M.; Almermesh, M.H.S.; Alghamdi, S.; Hussain, A.; Anwar, S. The Impact of COVID-19 On Comorbidities: A Review Of Recent Updates For Combating It. Saudi J. Biol. Sci. 2022, 29, 3586–3599. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.; Du, H.; Gardner, L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Anka, A.U.; Tahir, M.I.; Abubakar, S.D.; Alsabbagh, M.; Zian, Z.; Hamedifar, H.; Sabzevari, A.; Azizi, G. Coronavirus Disease 2019 (COVID-19): An Overview of the Immunopathology, Serological Diagnosis and Management. Scand. J. Immunol. 2021, 93, e12998. [Google Scholar] [CrossRef]
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical Update on COVID-19 for the Emergency Clinician: Presentation and Evaluation. Am. J. Emerg. Med. 2022, 54, 46–57. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence: Clinical Guidelines; National Institute for Health and Care Excellence (NICE): London, UK, 2020; ISBN 978-1-4731-3943-5.
- Logue, J.K.; Franko, N.M.; McCulloch, D.J.; McDonald, D.; Magedson, A.; Wolf, C.R.; Chu, H.Y. Sequelae in Adults at 6 Months After COVID-19 Infection. JAMA Netw. Open 2021, 4, e210830. [Google Scholar] [CrossRef]
- Munker, D.; Veit, T.; Barton, J.; Mertsch, P.; Mümmler, C.; Osterman, A.; Khatamzas, E.; Barnikel, M.; Hellmuth, J.C.; Münchhoff, M.; et al. Pulmonary Function Impairment of Asymptomatic and Persistently Symptomatic Patients 4 Months after COVID-19 According to Disease Severity. Infection 2022, 50, 157–168. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-Acute Sequelae of COVID-19 with a Cardiovascular Focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol.-Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and Mechanism of Long COVID: A Comprehensive Review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.C. Autonomic Dysfunction in SARS-CoV-2 Infection Acute and Long-Term Implications COVID-19 Editor’s Page Series. J. Thromb. Thrombolysis 2021, 52, 692–707. [Google Scholar] [CrossRef] [PubMed]
- Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E.-S. COVID-19-Induced Dysautonomia: A Menace of Sympathetic Storm. ASN Neuro 2021, 13, 175909142110576. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 Long-Term Effects of COVID-19: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Barizien, N.; Le Guen, M.; Russel, S.; Touche, P.; Huang, F.; Vallée, A. Clinical Characterization of Dysautonomia in Long COVID-19 Patients. Sci. Rep. 2021, 11, 14042. [Google Scholar] [CrossRef]
- Dotan, A.; David, P.; Arnheim, D.; Shoenfeld, Y. The Autonomic Aspects of the Post-COVID19 Syndrome. Autoimmun. Rev. 2022, 21, 103071. [Google Scholar] [CrossRef]
- Ser, M.H.; Çalıkuşu, F.Z.; Tanrıverdi, U.; Abbaszade, H.; Hakyemez, S.; Balkan, İ.İ.; Karaali, R.; Gündüz, A. Autonomic and Neuropathic Complaints of Long-COVID Objectified: An Investigation from Electrophysiological Perspective. Neurol. Sci. 2022, 43, 6167–6177. [Google Scholar] [CrossRef]
- Charleston-Villalobos, S.; Reulecke, S.; Voss, A.; Azimi-Sadjadi, M.R.; González-Camarena, R.; Gaitán-González, M.J.; González-Hermosillo, J.A.; Hernández-Pacheco, G.; Schulz, S.; Aljama-Corrales, T. Time-Frequency Analysis of Cardiovascular and Cardiorespiratory Interactions During Orthostatic Stress by Extended Partial Directed Coherence. Entropy 2019, 21, 468. [Google Scholar] [CrossRef]
- Santiago-Fuentes, L.M.; Charleston-Villalobos, S.; González-Camarena, R.; Voss, A.; Mejía-Avila, M.E.; Buendía-Roldan, I.; Reulecke, S.; Aljama-Corrales, T. Effects of Supplemental Oxygen on Cardiovascular and Respiratory Interactions by Extended Partial Directed Coherence in Idiopathic Pulmonary Fibrosis. Front. Netw. Physiol. 2022, 2, 834056. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The Relationship of Autonomic Imbalance, Heart Rate Variability and Cardiovascular Disease Risk Factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Scholkmann, F.; Wolf, U. The Pulse-Respiration Quotient: A Powerful but Untapped Parameter for Modern Studies About Human Physiology and Pathophysiology. Front. Physiol. 2019, 10, 371. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Medina, D.A. Efectos Psicofisiológicos de La Respiración Diafragmática y La Estimulación Térmica Sobre La Actividad Autonómica Del Estrés Agudo. Acta Investig. Psicológica 2018, 8, 101–113. [Google Scholar] [CrossRef]
- Hopper, S.I.; Murray, S.L.; Ferrara, L.R.; Singleton, J.K. Effectiveness of Diaphragmatic Breathing on Physiological and Psychological Stress in Adults: A Quantitative Systematic Review Protocol. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 1367–1372. [Google Scholar] [CrossRef]
- Sakakibara, M. Evaluation of Heart Rate Variability and Application of Heart Rate Variability Biofeedback: Toward Further Research on Slow-Paced Abdominal Breathing in Zen Meditation. Appl. Psychophysiol. Biofeedback 2022, 47, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Anasuya, B.; Deepak, K.; Jaryal, A.; Narang, R. Effect of Slow Breathing on Autonomic Tone & Baroreflex Sensitivity in Yoga Practitioners. Indian J. Med. Res. 2020, 152, 638. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yue, Z.-Q.; Gong, Z.-Q.; Zhang, H.; Duan, N.-Y.; Shi, Y.-T.; Wei, G.-X.; Li, Y.-F. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults. Front. Psychol. 2017, 8, 874. [Google Scholar] [CrossRef] [PubMed]
- Behan, C. The Benefits of Meditation and Mindfulness Practices during Times of Crisis Such as COVID-19. Ir. J. Psychol. Med. 2020, 37, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Sevoz-Couche, C.; Laborde, S. Heart Rate Variability and Slow-Paced Breathing:When Coherence Meets Resonance. Neurosci. Biobehav. Rev. 2022, 135, 104576. [Google Scholar] [CrossRef]
- Laborde, S.; Allen, M.S.; Borges, U.; Dosseville, F.; Hosang, T.J.; Iskra, M.; Mosley, E.; Salvotti, C.; Spolverato, L.; Zammit, N.; et al. Effects of Voluntary Slow Breathing on Heart Rate and Heart Rate Variability: A Systematic Review and a Meta-Analysis. Neurosci. Biobehav. Rev. 2022, 138, 104711. [Google Scholar] [CrossRef]
- Corrado, J.; Halpin, S.; Preston, N.; Whiteside, D.; Tarrant, R.; Davison, J.; Simms, A.D.; O’Connor, R.J.; Casson, A.; Sivan, M. HEART Rate Variability Biofeedback for Long COVID Symptoms (HEARTLOC): Protocol for a Feasibility Study. BMJ Open 2022, 12, e066044. [Google Scholar] [CrossRef]
- Peláez-Hernández, V.; Luna-Rodríguez, G.L.; Orea-Tejeda, A.; Mora-Gallegos, J.; Keirns-Davis, C.; González-Islas, D. Heart Rate Variability Disturbances and Biofeedback Treatment in COVID-19 Survivors. E-J. Cardiol. Pract. 2021, 21. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-21/heart-rate-variability-disturbances-and-biofeedback-treatment-in-covid-19-surviv (accessed on 30 March 2023).
- Domínguez Trejo, B.; Ruvalcaba Palacios, G.; Montero López-Lena, M. Pain, Emotions, and Social-Well-Being in Mexico. In Handbook of Happiness Research in Latin America; Rojas, M., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 489–513. ISBN 978-94-017-7202-0. [Google Scholar]
- van Goor, H.M.R.; van Loon, K.; Breteler, M.J.M.; Kalkman, C.J.; Kaasjager, K.A.H. Circadian Patterns of Heart Rate, Respiratory Rate and Skin Temperature in Hospitalized COVID-19 Patients. PLoS ONE 2022, 17, e0268065. [Google Scholar] [CrossRef] [PubMed]
- Spengler, C.M.; Czeisler, C.A.; Shea, S.A. An Endogenous Circadian Rhythm of Respiratory Control in Humans. J. Physiol. 2000, 526, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-Term Heart Rate Variability—Influence of Gender and Age in Healthy Subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef]
- The MathWorks Inc. Signal Processing Toolbox 2022. Available online: https://www.mathworks.com/products/signal.html (accessed on 7 February 2023).
- Soni, R.; Muniyandi, M. Breath Rate Variability: A Novel Measure to Study the Meditation Effects. Int. J. Yoga 2019, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Mejía, E.; May, J.M.; Torres, R.; Kyriacou, P.A. Pulse Rate Variability in Cardiovascular Health: A Review on Its Applications and Relationship with Heart Rate Variability. Physiol. Meas. 2020, 41, 07TR01. [Google Scholar] [CrossRef]
- Yuda, E.; Shibata, M.; Ogata, Y.; Ueda, N.; Yambe, T.; Yoshizawa, M.; Hayano, J. Pulse Rate Variability: A New Biomarker, Not a Surrogate for Heart Rate Variability. J. Physiol. Anthropol. 2020, 39, 21. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart Rate Variability Analysis Software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Solís-Montufar, E.E.; Gálvez-Coyt, G.; Muñoz-Diosdado, A. Entropy Analysis of RR-Time Series From Stress Tests. Front. Physiol. 2020, 11, 981. [Google Scholar] [CrossRef]
- Hansen, C.; Wei, Q.; Shieh, J.-S.; Fourcade, P.; Isableu, B.; Majed, L. Sample Entropy, Univariate, and Multivariate Multi-Scale Entropy in Comparison with Classical Postural Sway Parameters in Young Healthy Adults. Front. Hum. Neurosci. 2017, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Kamath, M.V.; Watanabe, M.; Upton, A. Heart Rate Variability (HRV) Signal Analysis: Clinical Applications, 1st ed.; Chapman and Hall/CRC: Baton Rouge, LA, USA, 2016; ISBN 978-1-4665-7605-6. [Google Scholar]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Termini, S. A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory. Inf. Control 1972, 20, 301–312. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring Complexity Using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.E.V.; Fazan, R.; Marin-Neto, J.A. PyBioS: A Freeware Computer Software for Analysis of Cardiovascular Signals. Comput. Methods Programs Biomed. 2020, 197, 105718. [Google Scholar] [CrossRef] [PubMed]
- Alhuthail, E.; Stockley, J.; Coney, A.; Cooper, B. Measurement of Breathing in Patients with Post-COVID-19 Using Structured Light Plethysmography (SLP). BMJ Open Respir. Res. 2021, 8, e001070. [Google Scholar] [CrossRef]
- Gerritsen, R.J.S.; Band, G.P.H. Breath of Life: The Respiratory Vagal Stimulation Model of Contemplative Activity. Front. Hum. Neurosci. 2018, 12, 397. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psychophysiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef]
- You, M.; Laborde, S.; Zammit, N.; Iskra, M.; Borges, U.; Dosseville, F. Single Slow-Paced Breathing Session at Six Cycles per Minute: Investigation of Dose-Response Relationship on Cardiac Vagal Activity. Int. J. Environ. Res. Public. Health 2021, 18, 12478. [Google Scholar] [CrossRef]
- Li, C.; Chang, Q.; Zhang, J.; Chai, W. Effects of Slow Breathing Rate on Heart Rate Variability and Arterial Baroreflex Sensitivity in Essential Hypertension. Medicine 2018, 97, e0639. [Google Scholar] [CrossRef]
- Shanks, J.; Ramchandra, R. Angiotensin II and the Cardiac Parasympathetic Nervous System in Hypertension. Int. J. Mol. Sci. 2021, 22, 12305. [Google Scholar] [CrossRef]
- Li, Y.; Wei, B.; Liu, X.; Shen, X.Z.; Shi, P. Microglia, Autonomic Nervous System, Immunity and Hypertension: Is There a Link? Pharmacol. Res. 2020, 155, 104451. [Google Scholar] [CrossRef] [PubMed]
- Kurtoğlu, E.; Afsin, A.; Aktaş, İ.; Aktürk, E.; Kutlusoy, E.; Çağaşar, Ö. Altered Cardiac Autonomic Function after Recovery from COVID-19. Ann. Noninvasive Electrocardiol. 2022, 27, e12916. [Google Scholar] [CrossRef] [PubMed]
- Bajić, D.; Đajić, V.; Milovanović, B. Entropy Analysis of COVID-19 Cardiovascular Signals. Entropy 2021, 23, 87. [Google Scholar] [CrossRef]
- Roy, B.; Ghatak, S. Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arq. Bras. Cardiol. 2013, 101, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Matić, Z.; Platiša, M.M.; Kalauzi, A.; Bojić, T. Slow 0.1 Hz Breathing and Body Posture Induced Perturbations of RRI and Respiratory Signal Complexity and Cardiorespiratory Coupling. Front. Physiol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Matić, Z.; Kalauzi, A.; Moser, M.; Platiša, M.M.; Lazarević, M.; Bojić, T. Pulse Respiration Quotient as a Measure Sensitive to Changes in Dynamic Behavior of Cardiorespiratory Coupling Such as Body Posture and Breathing Regime. Front. Physiol. 2022, 13, 946613. [Google Scholar] [CrossRef]
- Tian, N.; Song, R. Effects of Different Interventions on Cardiac Regulation Using Fuzzy Entropy. IEEE Access 2019, 7, 75949–75956. [Google Scholar] [CrossRef]
- Vinik, A.I.; Casellini, C.; Parson, H.K.; Colberg, S.R.; Nevoret, M.-L. Cardiac Autonomic Neuropathy in Diabetes: A Predictor of Cardiometabolic Events. Front. Neurosci. 2018, 12, 591. [Google Scholar] [CrossRef]
- Agashe, S.; Petak, S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovasc. J. 2018, 14, 251. [Google Scholar] [CrossRef]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart Rate Variability in Type 2 Diabetes Mellitus: A Systematic Review and Meta–Analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Alawna, M. Important Role of Relaxation Techniques in Immune Functions, Glycemic Control, and Stress in Diabetic Patients with COVID-19: A Review. Curr. Diabetes Rev. 2021, 17, e121020186816. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, L.M.; Bernardo, A.F.B.; de Carvalho, T.D.; Vanderlei, F.M.; da Silva, A.K.F.; Vanderlei, L.C.M. Complexity of Autonomic Nervous System Function in Individuals with COPD. J. Bras. Pneumol. 2018, 44, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, H. Effects of Diaphragmatic Breathing on Health: A Narrative Review. Medicines 2020, 7, 65. [Google Scholar] [CrossRef]
- Lachowska, K.; Bellwon, J.; Moryś, J.; Gruchała, M.; Hering, D. Slow Breathing Improves Cardiovascular Reactivity to Mental Stress and Health-Related Quality of Life in Heart Failure Patients with Reduced Ejection Fraction. Cardiol. J. 2020, 27, 772–779. [Google Scholar] [CrossRef]
- Lachowska, K.; Bellwon, J.; Narkiewicz, K.; Gruchała, M.; Hering, D. Long-Term Effects of Device-Guided Slow Breathing in Stable Heart Failure Patients with Reduced Ejection Fraction. Clin. Res. Cardiol. 2019, 108, 48–60. [Google Scholar] [CrossRef]
- Larson, M.; Chantigian, D.P.; Asirvatham-Jeyaraj, N.; Van de Winckel, A.; Keller-Ross, M.L. Slow-Paced Breathing and Autonomic Function in People Post-Stroke. Front. Physiol. 2020, 11, 573325. [Google Scholar] [CrossRef]
- Luna-Rodríguez, G.L.; Peláez-Hernández, V.; Orea-Tejeda, A.; Ledesma-Ruíz, C.D.; Casarín-López, F.; Rosas-Trujillo, A.; Domínguez-Trejo, B.; Tepepa-Flores, L.E. Prevalence of Post-Traumatic Stress Disorder, Emotional Impairments, and Fear in COVID-19 Surviving Patients. Front. Virtual Real. 2022, 3, 927058. [Google Scholar] [CrossRef]
- Egede, L.E.; Walker, R.J.; Dawson, A.Z.; Zosel, A.; Bhandari, S.; Nagavally, S.; Martin, I.; Frank, M. Short-Term Impact of COVID-19 on Quality of Life, Perceived Stress, and Serious Psychological Distress in an Adult Population in the Midwest United States. Qual. Life Res. 2022, 31, 2387–2396. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Allendes, F.J.; Díaz, H.S.; Ortiz, F.C.; Marcus, N.J.; Quintanilla, R.; Inestrosa, N.C.; Del Rio, R. Cardiovascular and Autonomic Dysfunction in Long-COVID Syndrome and the Potential Role of Non-Invasive Therapeutic Strategies on Cardiovascular Outcomes. Front. Med. 2023, 9, 1095249. [Google Scholar] [CrossRef] [PubMed]
- Fournié, C.; Chouchou, F.; Dalleau, G.; Caderby, T.; Cabrera, Q.; Verkindt, C. Heart Rate Variability Biofeedback in Chronic Disease Management: A Systematic Review. Complement. Ther. Med. 2021, 60, 102750. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart Rate Variability Biofeedback: How and Why Does It Work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef] [PubMed]
- Gevirtz, R. The Promise of Heart Rate Variability Biofeedback: Evidence-Based Applications. Biofeedback 2013, 41, 110–120. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Chellappa, S.L.; Hu, K.; Shea, S.A. Impact of Mental Stress, the Circadian System and Their Interaction on Human Cardiovascular Function. Psychoneuroendocrinology 2019, 103, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed]
- Goessl, V.C.; Curtiss, J.E.; Hofmann, S.G. The Effect of Heart Rate Variability Biofeedback Training on Stress and Anxiety: A Meta-Analysis. Psychol. Med. 2017, 47, 2578–2586. [Google Scholar] [CrossRef]
Variable | Sample (n = 49) | Men (n = 32) | Women (n = 17) |
---|---|---|---|
No comorbidities | 26 (53%) | 15 (47%) | 11 (65%) |
≥1 comorbidity | 23 (47%) | 17 (53%) | 6 (35%) |
Mean hospital stay | 21 days | 22.4 days | 19.5 days |
No comorbidities | 15.6 days | 14.8 days | 16.6 days |
≥1 comorbidity | 28 days | 29 days | 24.8 days |
Sequelae | 26 (53%) | 14 (44%) | 12 (71%) |
Cardiovascular | 2 | 1 | 1 |
Pulmonary | 2 | 1 | 1 |
Motor | 4 | 2 | 2 |
Psychological | 20 | 11 | 9 |
Cognitive | 4 | 2 | 2 |
Others | 7 | 2 | 5 |
Phase | Duration | Tasks | |
---|---|---|---|
1 | Open eyes | 2.5 min | Sitting upright with open eyes, spontaneous breathing |
2 | Closed eyes | 2.5 min | Sitting upright with closed eyes, spontaneous breathing |
3 | Natural relaxation | 2.5 min | Sitting upright with closed eyes, natural skill of relaxation |
4 | Induced relaxation | 2.5 min | Sitting upright with closed eyes, slow-paced breathing (six breaths/min, 1:1 inhalation to exhalation ratio) |
Type | Index |
---|---|
Linear | Mean PP distance |
SDNN | |
RMSSD | |
LF power | |
HF power | |
LF/HF ratio | |
Nonlinear | SampEn |
DFA | |
DFA |
Comorbidity | n | Age (Years ± SD) |
---|---|---|
Cardiovascular disease | 3 | 49 ± 14 |
Lung disease | 3 | 53.75 ± 13.1 |
Diabetes | 4 | 50.8 ± 13.8 |
No comorbidities | 11 | 47.5 ± 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Solís, A.M.; Peláez-Hernández, V.; Santiago-Fuentes, L.M.; Luna-Rodríguez, G.L.; Reyes-Lagos, J.J.; Orea-Tejeda, A. Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors. Entropy 2023, 25, 874. https://doi.org/10.3390/e25060874
Sánchez-Solís AM, Peláez-Hernández V, Santiago-Fuentes LM, Luna-Rodríguez GL, Reyes-Lagos JJ, Orea-Tejeda A. Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors. Entropy. 2023; 25(6):874. https://doi.org/10.3390/e25060874
Chicago/Turabian StyleSánchez-Solís, Alejandra Margarita, Viridiana Peláez-Hernández, Laura Mercedes Santiago-Fuentes, Guadalupe Lizzbett Luna-Rodríguez, José Javier Reyes-Lagos, and Arturo Orea-Tejeda. 2023. "Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors" Entropy 25, no. 6: 874. https://doi.org/10.3390/e25060874
APA StyleSánchez-Solís, A. M., Peláez-Hernández, V., Santiago-Fuentes, L. M., Luna-Rodríguez, G. L., Reyes-Lagos, J. J., & Orea-Tejeda, A. (2023). Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors. Entropy, 25(6), 874. https://doi.org/10.3390/e25060874