Local Phase Transitions in a Model of Multiplex Networks with Heterogeneous Degrees and Inter-Layer Coupling
Abstract
1. Introduction
2. Background Theory
2.1. Single-Layer Network Definitions
- Matrix Representation
- Degrees and Degree Distribution
2.2. Multiplex Network Definitions
- Matrix Representation
- Multilinks in Multiplex Networks
- Multidegrees
- Overlap
2.3. Exponential Random Graph Models for Multiplexes
2.4. Maximum Likelihood Parameter Estimation
2.5. Benchmark: Independent Layers Model
3. The Overlapping Average Configuration Model
3.1. Constructing the Hamiltonian
3.2. Calculating the Partition Function
4. Local Phase Transitions in the Model
5. Numerical Analysis
5.1. Exploring the Parameter Space
5.1.1. Homogeneous Fitness: Erdős–Rényi Graphs with Overlap
5.1.2. Power-Law-Distributed Fitness: Scale-Free Networks with Overlap
5.1.3. Log-Normally Distributed Fitness
6. Analysis of the World Trade Multiplex
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hubbard–Stratonovich Transform
Appendix B. Maximum Likelihood
References
- Krackhardt, D. Cognitive social structures. Soc. Netw. 1987, 9, 109–134. [Google Scholar] [CrossRef]
- Padgett, J.F.; Ansell, C.K. Robust Action and the Rise of the Medici, 1400–1434. Am. J. Sociol. 1993, 98, 1259–1319. [Google Scholar] [CrossRef][Green Version]
- Bardoscia, M.; Barucca, P.; Battiston, S.; Caccioli, F.; Cimini, G.; Garlaschelli, D.; Saracco, F.; Squartini, T.; Caldarelli, G. The physics of financial networks. Nat. Rev. Phys. 2021, 3, 490–507. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsiotas, D.; Magafas, L.; Argyrakis, P. An electrostatics method for converting a time-series into a weighted complex network. Sci. Rep. 2021, 11, 11785. [Google Scholar] [CrossRef]
- MacMahon, M.; Garlaschelli, D. Community Detection for Correlation Matrices. Phys. Rev. X 2015, 5, 021006. [Google Scholar] [CrossRef][Green Version]
- Anagnostou, I.; Squartini, T.; Kandhai, D.; Garlaschelli, D. Uncovering the mesoscale structure of the credit default swap market to improve portfolio risk modelling. Quant. Financ. 2021, 21, 1501–1518. [Google Scholar] [CrossRef]
- De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M.A.; Gómez, S.; Arenas, A. Mathematical formulation of multilayer networks. Phys. Rev. X 2013, 3, 041022. [Google Scholar] [CrossRef][Green Version]
- Battiston, F.; Nicosia, V.; Latora, V. Structural measures for multiplex networks. Phys. Rev. E 2014, 89, 032804. [Google Scholar] [CrossRef][Green Version]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef][Green Version]
- Battiston, F.; Nicosia, V.; Latora, V. The new challenges of multiplex networks: Measures and models. Eur. Phys. J. Spec. Top. 2017, 226, 401–416. [Google Scholar] [CrossRef][Green Version]
- Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C.I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M. The structure and dynamics of multilayer networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Verbrugge, L.M. Multiplexity in adult friendships. Soc. Forces 1979, 57, 1286–1309. [Google Scholar] [CrossRef]
- Erdos, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60. [Google Scholar]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef][Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of’small-world’networks. Nature 1998, 393, 440. [Google Scholar] [CrossRef]
- Squartini, T.; Garlaschelli, D. Analytical maximum-likelihood method to detect patterns in real networks. New J. Phys. 2011, 13, 083001. [Google Scholar] [CrossRef]
- Squartini, T.; Mastrandrea, R.; Garlaschelli, D. Unbiased sampling of network ensembles. New J. Phys. 2015, 17, 023052. [Google Scholar] [CrossRef]
- Squartini, T.; Garlaschelli, D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph Combinatorics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar] [CrossRef][Green Version]
- Holland, P.W.; Leinhardt, S. An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 1981, 76, 33–50. [Google Scholar] [CrossRef]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Frank, O.; Strauss, D. Markov graphs. J. Am. Stat. Assoc. 1986, 81, 832–842. [Google Scholar] [CrossRef]
- Contractor, N.S.; Wasserman, S.; Faust, K. Testing multitheoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example. Acad. Manag. Rev. 2006, 31, 681–703. [Google Scholar] [CrossRef][Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994; Voluem 8. [Google Scholar]
- Carrington, P.J.; Scott, J.; Wasserman, S. Models and Methods in Social Network Analysis; Cambridge University Press: Cambridge, UK, 2005; Volume 28. [Google Scholar]
- Park, J.; Newman, M.E. Statistical mechanics of networks. Phys. Rev. E 2004, 70, 066117. [Google Scholar] [CrossRef][Green Version]
- Gemmetto, V.; Garlaschelli, D. Multiplexity versus correlation: The role of local constraints in real multiplexes. Sci. Rep. 2015, 5, 9120. [Google Scholar] [CrossRef][Green Version]
- Gemmetto, V.; Squartini, T.; Picciolo, F.; Ruzzenenti, F.; Garlaschelli, D. Multiplexity and multireciprocity in directed multiplexes. Phys. Rev. E 2016, 94, 042316. [Google Scholar] [CrossRef][Green Version]
- Barigozzi, M.; Fagiolo, G.; Garlaschelli, D. Multinetwork of international trade: A commodity-specific analysis. Phys. Rev. E 2010, 81, 046104. [Google Scholar] [CrossRef][Green Version]
- Squartini, T.; Fagiolo, G.; Garlaschelli, D. Randomizing world trade. I. A binary network analysis. Phys. Rev. E 2011, 84, 046117. [Google Scholar] [CrossRef][Green Version]
- Fagiolo, G.; Squartini, T.; Garlaschelli, D. Null models of economic networks: The case of the world trade web. J. Econ. Interact. Coord. 2013, 8, 75–107. [Google Scholar] [CrossRef][Green Version]
- Mastrandrea, R.; Squartini, T.; Fagiolo, G.; Garlaschelli, D. Reconstructing the world trade multiplex: The role of intensive and extensive biases. Phys. Rev. E 2014, 90, 062804. [Google Scholar] [CrossRef][Green Version]
- Szell, M.; Lambiotte, R.; Thurner, S. Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. USA 2010, 107, 13636–13641. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cardillo, A.; Gómez-Gardenes, J.; Zanin, M.; Romance, M.; Papo, D.; Del Pozo, F.; Boccaletti, S. Emergence of network features from multiplexity. Sci. Rep. 2013, 3, 1344. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Menichetti, G.; Remondini, D.; Panzarasa, P.; Mondragón, R.J.; Bianconi, G. Weighted multiplex networks. PLoS ONE 2014, 9, e97857. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef][Green Version]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef][Green Version]
- Berlingerio, M.; Coscia, M.; Giannotti, F.; Monreale, A.; Pedreschi, D. Foundations of multidimensional network analysis. In Proceedings of the Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference, Kaohsiung, Taiwan, 25–27 July 2011; pp. 485–489. [Google Scholar]
- Bianconi, G. Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E 2013, 87, 062806. [Google Scholar] [CrossRef][Green Version]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Garlaschelli, D.; Loffredo, M.I. Multispecies grand-canonical models for networks with reciprocity. Phys. Rev. E 2006, 73, 015101. [Google Scholar] [CrossRef][Green Version]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Anand, K.; Bianconi, G. Entropy measures for networks: Toward an information theory of complex topologies. Phys. Rev. E 2009, 80, 045102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Garlaschelli, D.; Loffredo, M.I. Generalized bose-fermi statistics and structural correlations in weighted networks. Phys. Rev. Lett. 2009, 102, 038701. [Google Scholar] [CrossRef][Green Version]
- Coolen, T.; Annibale, A.; Roberts, E. Generating Random Networks and Graphs; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Pólya, G.; Szegő, G. Problems and Theorems in Analysis: Series, Integral Calculus, Theory of Functions; Aeppli, D., Translator; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Park, J.; Newman, M.E. Solution of the two-star model of a network. Phys. Rev. E 2004, 70, 066146. [Google Scholar] [CrossRef][Green Version]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayrakdar, N.; Gemmetto, V.; Garlaschelli, D. Local Phase Transitions in a Model of Multiplex Networks with Heterogeneous Degrees and Inter-Layer Coupling. Entropy 2023, 25, 828. https://doi.org/10.3390/e25050828
Bayrakdar N, Gemmetto V, Garlaschelli D. Local Phase Transitions in a Model of Multiplex Networks with Heterogeneous Degrees and Inter-Layer Coupling. Entropy. 2023; 25(5):828. https://doi.org/10.3390/e25050828
Chicago/Turabian StyleBayrakdar, Nedim, Valerio Gemmetto, and Diego Garlaschelli. 2023. "Local Phase Transitions in a Model of Multiplex Networks with Heterogeneous Degrees and Inter-Layer Coupling" Entropy 25, no. 5: 828. https://doi.org/10.3390/e25050828
APA StyleBayrakdar, N., Gemmetto, V., & Garlaschelli, D. (2023). Local Phase Transitions in a Model of Multiplex Networks with Heterogeneous Degrees and Inter-Layer Coupling. Entropy, 25(5), 828. https://doi.org/10.3390/e25050828