A Note on Cumulant Technique in Random Matrix Theory
Abstract
1. Introduction
2. Methods
2.1. Determinantal Point Process and Cluster Functions
2.2. Linear Statistics in Classical Compact Groups
2.3. Multivariate Linear Statistics and Number Theory Connections
- (i)
- (ii)
- (iii)
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wigner, E. Characteristic Vectors of Bordered Matrices with Infinite Dimension. I. Ann. Math. 1955, 62, 548–564. [Google Scholar] [CrossRef]
- Wigner, E. Characteristic Vectors of Bordered Matrices with Infinite Dimension. II. Ann. Math. 1957, 65, 203–207. [Google Scholar] [CrossRef]
- Wigner, E. On the Distribution of the Roots of Certain Symmetric Spaces. Ann. Math. 1958, 67, 325–327. [Google Scholar] [CrossRef]
- Bai, Z.D. Methodologies in Spectral Analysis of Large Dimensional Random Matrices, a Review. Stat. Sin. 1999, 9, 611–677. [Google Scholar]
- Bose, A.; Hazra, R.S.; Saha, K. Patterned Random Matrices and Method of Moments. In Proceedings of the International Congress of Mathematicians, Hyderabad, India, 19–27 August 2010; pp. 2203–2231. [Google Scholar]
- Diaconu, S. More Limiting Distributions for Eigenvalues of Wigner Matrices. arXiv 2022, arXiv:2203.08712. [Google Scholar] [CrossRef]
- Diaconu, S. Finite Rank Perturbations of Heavy-Tailed Wigner Matrices. arXiv 2022, arXiv:2208.02756. [Google Scholar]
- Feldheim, O.; Sodin, S. A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices. Geom. Funct. Anal. 2010, 20–21, 88–123. [Google Scholar] [CrossRef]
- Peche, S.; Soshnikov, A. Wigner Random Matrices with Non-Symmetrically Distributed Entries. J. Stat. Phys. 2007, 129, 857–884. [Google Scholar] [CrossRef]
- Sinai, Y.; Soshnikov, A. A Refinement of Wigner’s Semicircle Law in a Neighborhood of the Spectrum Edge for Random Symmetric Matrices. Funct. Anal. Its Appl. 1998, 32, 114–131. [Google Scholar] [CrossRef]
- Sodin, S. Several Applications of the Moment Method in Random Matrix Theory. In Proceedings of the International Congress of Mathematicians, Seoul, Republic of Korea, 13–21 August 2014; pp. 451–475. [Google Scholar]
- Soshnikov, A. Universality at the Edge of the Spectrum in Wigner Random Matrices. Commun. Math. Phys. 1999, 207, 697–733. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Bai, Z.D.; Krishnaiah, P.R. On the Limit of the Largest Eigenvalue of the Large Dimensional Sample Covariance Matrix. Probab. Theory Relat. Fields 1988, 78, 509–521. [Google Scholar] [CrossRef]
- Costin, O.; Lebowitz, J. Gaussian Fluctuations in Random Matrices. Phys. Rev. Lett. 1995, 75, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Borodin, A. Determinantal Point Processes. In The Oxford Handbook of Random Matrix Theory; Akemann, B., Baik, J., Di Francesco, P., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 231–249. [Google Scholar]
- Soshnikov, A. Determinantal Random Point Fields. Russ. Math. Surv. 2000, 55, 923–975. [Google Scholar] [CrossRef]
- Soshnikov, A. Gaussian Fluctuation in Airy, Bessel, Sine and Other Determinantal Random Point Fields. J. Stat. Phys. 2000, 100, 491–522. [Google Scholar] [CrossRef]
- Soshnikov, A. Gaussian Limit for Determinantal Random Point Fields. Ann. Probab. 2002, 30, 171–187. [Google Scholar] [CrossRef]
- Hough, J.B.; Krishnapur, M.; Peres, Y.; Virag, B. Determinantal Processes and Independence. Probab. Surv. 2006, 3, 206–229. [Google Scholar] [CrossRef]
- Ameur, Y.; Hedenmalm, H.; Makarov, N. Fluctuations of Eigenvalues of Random Normal Matrices. Duke Math. J. 2011, 159, 31–81. [Google Scholar] [CrossRef]
- Haimi, A.; Romero, J.L. Normality of Smooth Statistics for Planar Determinantal Point Processes. arXiv 2022, arXiv:2210.10588. [Google Scholar]
- Rider, B.; Virag, B. Complex Determinantal Processes and H1 Noise. Electron. J. Probab. 2007, 12, 1238–1257. [Google Scholar] [CrossRef]
- Soshnikov, A. Level Spacings Distribution for Large Random Matrices: Gaussian Fluctuations. Ann. Math. 1998, 148, 573–617. [Google Scholar] [CrossRef]
- Soshnikov, A. Statistics of Extreme Spacings in Determinantal Random Point Processes. Mosc. Math. J. 2005, 5, 705–719. [Google Scholar] [CrossRef]
- Weyl, H. The Classical Groups: Their Invariants and Representations, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Systems. III. J. Math. Phys. 1962, 3, 1191–1198. [Google Scholar] [CrossRef]
- Meckes, E.S. The Random Matrix Theory of the Classical Compact Groups; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Mehta, M.L. Random Matrices, 3rd ed.; Elsevier Ltd.: New York, NY, USA, 2004. [Google Scholar]
- Diaconis, P.; Shahshahani, M. On Eigenvalues of Random Matrices. J. Appl. Probab. 1994, 31A, 49–62. [Google Scholar] [CrossRef]
- Johansson, K. On Szego’s Asymptotic Formula for Toeplitz Determinants and Generalizations. Bull. Des Sci. Math. 1988, 112, 257–304. [Google Scholar]
- Johansson, K. On Random Matrices from the Compact Classical Groups. Ann. Math. 1997, 145, 519–545. [Google Scholar] [CrossRef]
- Courteaut, K.; Johansson, K.; Lambert, G. From Berry-Esseen to Super-exponential. arXiv 2022, arXiv:2204.03282. [Google Scholar]
- Johansson, K.; Lambert, G. Multivariate Normal Approximation for Traces of Random Unitary Matrices. Ann. Probab. 2021, 49, 2961–3010. [Google Scholar] [CrossRef]
- Diaconis, P. Patterns in Eigenvalues. Bull. New Ser. Am. Math. Soc. 2003, 40, 155–178. [Google Scholar] [CrossRef]
- Malyshev, V.A.; Minlos, R.A. Gibbs Random Fields. Cluster Expansions; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Soshnikov, A. Central Limit Theorem for Local Linear Statistics in Classical Compact Groups and Related Combinatorial Identities. Ann. Probab. 2000, 28, 1353–1370. [Google Scholar] [CrossRef]
- Haake, F.; Kus, M.; Sommers, H.J.; Schomerus, H.; Zyczkowski, K. Secular Determinants of Random Unitary Matrices. J. Phys. A 1996, 29, 3641–3658. [Google Scholar] [CrossRef]
- Haake, F.; Sommers, H.-J.; Weber, J. Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices. J. Phys. A 1999, 32, 6903–6913. [Google Scholar] [CrossRef]
- Spohn, H. Interacting Brownian Particles: A Study of Dyson Model. In Hydrodynamic Behavior and Interacting Particle Systems; Papanicolau, G., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 151–179. [Google Scholar]
- Soshnikov, A. Gaussian Fluctuation for Smoothed Local Correlations in CUE. J. Stat. Phys. 2023, 190, 13. [Google Scholar] [CrossRef]
- Breuer, J.; Duits, M. Central Limit Theorems for Biorthogonal Ensembles and Asymptotics of Recurrence Coefficients. J. Am. Math. Soc. 2017, 30, 27–66. [Google Scholar] [CrossRef]
- Deleporte, A.; Lambert, G. Universality for Free Fermions and the Local Weyl Law for Semiclassical Schrödinger Operators. arXiv 2021, arXiv:2109.02121. [Google Scholar]
- Lambert, G. CLT for Biorthogonal Ensembles and Related Combinatorial Identities. Adv. Math. 2018, 329, 590–648. [Google Scholar] [CrossRef]
- Lambert, G. Mesoscopic Fluctuations for Unitary Invariant Ensembles. Electron. J. Probab. 2018, 23, 1–33. [Google Scholar] [CrossRef]
- Aguirre, A.; Soshnikov, A.; Sumpter, J. Pair Dependent Linear Statistics for CβE. Random Matrices Theory Appl. 2021, 10, 2150035. [Google Scholar] [CrossRef]
- Aguirre, A.; Soshnikov, A. A Note on Pair Dependent Linear Statistics with Slowly Growing Variance. Theor. Math. Phys. 2020, 205, 502–512. [Google Scholar] [CrossRef]
- Sumpter, J.C. Pair Dependent Linear Statistics for Circular Random Matrices. Ph.D. Thesis, University of California at Davis, Davis, CA, USA, 2021. [Google Scholar]
- Chhaibi, R.; Najnudel, J.; Nikeghbali, A. The Circular Unitary Ensemble and the Riemann Zeta Function: The Microscopic Landscape and a New Approach to Ratios. Invent. Math. 2017, 207, 23–113. [Google Scholar] [CrossRef]
- Conrey, J.B. L-Functions and Random Matrices. In Mathematics Unlimited—2001 and Beyond; Engquist, B., Schmid, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 331–352. [Google Scholar]
- Keating, J. Random Matrices and Number Theory: Some Recent Themes. In Stochastic Processes and Random Matrices. Lecture Notes of the Les Houches Summer School: Volume 104; Schehr, G., Altland, A., Fyodorov, Y., O’Connell, N., Cugliandolo, L., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 348–381. [Google Scholar]
- Mezzadri, F.; Snaith, N.C. (Eds.) Recent Perspectives in Random Matrix Theory and Number Theory; London Mathematical Society Lecture Note Series 322; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Montgomery, H.L. On Pair Correlation of Zeros of the Zeta Function. Proc. Symp. Pure Math. 1973, 24, 181–193. [Google Scholar]
- Montgomery, H.L. Distribution of the Zeros of the Riemann Zeta Function. In Proceedings of the International Congress of Mathematicians, Vancouver, DC, Canada, 21–29 August 1974; pp. 379–381. [Google Scholar]
- Hejhal, D. On the Triple Correlation of the Zeros of the Zeta Function. Int. Math. Res. Notes 1994, 7, 293–302. [Google Scholar] [CrossRef]
- Rudnick, Z.; Sarnak, P. Zeros of Principal L-functions and Random Matrix Theory. Duke Math. J. 1996, 81, 269–322. [Google Scholar] [CrossRef]
- Feng, R.; Goetze, F.; Yao, D. Determinantal Point Processes on Spheres: Multivariate Linear Statistics. arXiv 2023, arXiv:2301.09216. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Rains, E. High Powers of Random Elements of Compact Lie Groups. Probab. Theory Relat. Fields 1997, 107, 219–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soshnikov, A.; Wu, C. A Note on Cumulant Technique in Random Matrix Theory. Entropy 2023, 25, 725. https://doi.org/10.3390/e25050725
Soshnikov A, Wu C. A Note on Cumulant Technique in Random Matrix Theory. Entropy. 2023; 25(5):725. https://doi.org/10.3390/e25050725
Chicago/Turabian StyleSoshnikov, Alexander, and Chutong Wu. 2023. "A Note on Cumulant Technique in Random Matrix Theory" Entropy 25, no. 5: 725. https://doi.org/10.3390/e25050725
APA StyleSoshnikov, A., & Wu, C. (2023). A Note on Cumulant Technique in Random Matrix Theory. Entropy, 25(5), 725. https://doi.org/10.3390/e25050725