Constitutive Modeling with Single and Dual Internal Variables
Abstract
:1. Introduction
2. Balance Laws
- Conservation of mass:
- Balance of linear momentum:
- Balance of angular momentum:
- Balance of energy:
- Small deviation of temperature from the reference value;
- Small-strain approximation;
- Zero body sources;
- Quadratic free energy.
3. Classical Constitutive Relations
3.1. Heat Conduction in Rigid Solids
3.2. Linear Thermoelasticity
3.3. Linear Viscous Fluids
- Choice of thermodynamic state space;
- Calculation of the time derivative of free energy;
- Combination of the first and second laws of thermodynamics to obtain the dissipation inequality;
- Linear solution of the dissipation inequality.
4. Simple Examples of Extended Constitutive Models
4.1. Heat Conduction in Rigid Solids
4.2. Linear Thermoelasticity
4.3. Linear Viscous Fluids
5. Single Internal Variable Framework
- The derivation of evolution equations for internal variables as the solution of the dissipation inequality;
- The possible elimination of an internal variable;
- The analysis of the consequences for quadratic free energy and the linearization of results in particular cases.
5.1. Heat Conduction in Rigid Solids
5.1.1. Dissipation Inequality
5.1.2. Evolution Equation for the Single Internal Variable
5.1.3. Heat Flux as Internal Variable
5.2. Linear Thermoelasticity
5.2.1. Evolution Equation for Internal Variable
5.2.2. Quadratic Free Energy: Isothermal Case
5.3. Viscous Fluids
5.3.1. Isothermal Case
5.3.2. Elimination of Internal Variable
5.3.3. Maxwell Fluids
5.3.4. Equations of Motion
5.3.5. Small Relaxation Time
5.3.6. Incompressible Fluid
6. Dual Internal Variables
6.1. Heat Conduction in Rigid Solids
6.1.1. Quadratic Free Energy
6.1.2. Evolution Equations for Internal Variables
6.1.3. Elimination of One Internal Variable
6.2. Linear Thermoelasticity
6.2.1. Dissipation Inequality: Isothermal Case
6.2.2. Quadratic Free Energy
6.3. Viscous Fluids
6.3.1. Isothermal Case
6.3.2. Elimination of One Internal Variable
6.3.3. Asymptotics
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mura, T. Micromechanics of Defects in Solids; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Nemat-Nasser, S.; Hori, M. Micromechanics: Overall Properties of Heterogeneous Materials; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Chen, W.; Fish, J. A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 2000, 68, 153–161. [Google Scholar] [CrossRef]
- Geers, M.; Kouznetsova, V.; Brekelmans, W. Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 2010, 234, 2175–2182. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Andrianov, I.V.; Manevitch, L.I. Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Matouš, K.; Geers, M.G.; Kouznetsova, V.G.; Gillman, A. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 2017, 330, 192–220. [Google Scholar] [CrossRef]
- Mindlin, R.D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Eringen, A.C.; Suhubi, E. Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 1964, 2, 189–203. [Google Scholar] [CrossRef]
- Forest, S. Micromorphic media. In Generalized Continua from the Theory to Engineering Applications; Springer: Vienna, Austria, 2013; pp. 249–300. [Google Scholar] [CrossRef]
- Neff, P.; Ghiba, I.D.; Madeo, A.; Placidi, L.; Rosi, G. A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 2014, 26, 639–681. [Google Scholar] [CrossRef]
- Forest, S. Micromorphic approach to materials with internal length. In Encyclopedia of Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1643–1652. [Google Scholar] [CrossRef]
- Maugin, G.A. Infernal variables and dissipative structures. J. Non-Equilib. Thermodyn. 1990, 15, 173–192. [Google Scholar] [CrossRef]
- Maugin, G.A.; Muschik, W. Thermodynamics with internal variables Part I. General concepts. J. Non-Equilib. Thermodyn. 1994, 19, 217–249. [Google Scholar] [CrossRef]
- McDowell, D. Internal state variable theory. In Handbook of Materials Modeling; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1151–1169. [Google Scholar] [CrossRef]
- Horstemeyer, M.F.; Bammann, D.J. Historical review of internal state variable theory for inelasticity. Int. J. Plast. 2010, 26, 1310–1334. [Google Scholar] [CrossRef]
- Müller, I.; Weiss, W. Thermodynamics of irreversible processes—Past and present. Eur. Phys. J. H 2012, 37, 139–236. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Faghihi, D. Overview of enhanced continuum theories for thermal and mechanical responses of the microsystems in the fast-transient process. J. Eng. Mater. Technol. 2014, 136, 041003. [Google Scholar] [CrossRef]
- Maugin, G.A. The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 2015, 69, 79–86. [Google Scholar] [CrossRef]
- He, G.; Liu, Y.; Lacy, T.; Horstemeyer, M. A historical review of the traditional methods and the internal state variable theory for modeling composite materials. Mech. Adv. Mater. Struct. 2022, 29, 2617–2638. [Google Scholar] [CrossRef]
- Coleman, B.D.; Gurtin, M.E. Thermodynamics with internal state variables. J. Chem. Phys. 1967, 47, 597–613. [Google Scholar] [CrossRef]
- Ván, P.; Berezovski, A.; Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 2008, 33, 235–254. [Google Scholar] [CrossRef]
- Coleman, B.D.; Noll, W. The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 1963, 13, 167–178. [Google Scholar] [CrossRef]
- Liu, I.S. Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 1972, 46, 131–148. [Google Scholar] [CrossRef]
- Kestin, J. Internal variables in the local-equilibrium approximation. J. Non-Equilib. Thermodyn. 1993, 18, 360–379. [Google Scholar] [CrossRef]
- Cimmelli, V.; Jou, D.; Ruggeri, T.; Ván, P. Entropy principle and recent results in non-equilibrium theories. Entropy 2014, 16, 1756–1807. [Google Scholar] [CrossRef]
- De Castro, A.B. Continuum Thermomechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1992. [Google Scholar]
- Gurtin, M.E.; Fried, E.; Anand, L. The Mechanics and Thermodynamics of Continua; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Chorin, A.J.; Marsden, J.E. A Mathematical Introduction to Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Joseph, D.D.; Preziosi, L. Heat waves. Rev. Mod. Phys. 1989, 61, 41–73. [Google Scholar] [CrossRef]
- Straughan, B. Heat Waves; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Domenico, M.D.; Sellitto, A.; Zampoli, V. Thermal pulse propagation beyond the Maxwell–Cattaneo theory: Application to one-dimensional nanosystems. Contin. Mech. Thermodyn. 2022, 34, 1455–1474. [Google Scholar] [CrossRef]
- Tangde, V.M.; Bhalekar, A.A. How flexible is the concept of local thermodynamic equilibrium? Entropy 2023, 25, 145. [Google Scholar] [CrossRef] [PubMed]
- Eringen, A.C. Continuum Physics. Volume 4—Polar and Nonlocal Field Theories; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Liu, W.; Saanouni, K.; Forest, S.; Hu, P. The micromorphic approach to generalized heat equations. J. Non-Equilib. Thermodyn. 2017, 42, 327–357. [Google Scholar] [CrossRef]
- Forest, S. Strain gradient elasticity from capillarity to the mechanics of nano-objects. In Mechanics of Strain Gradient Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 37–70. [Google Scholar] [CrossRef]
- Aifantis, E. A concise review of gradient models in mechanics and physics. Front. Phys. 2020, 7, 239. [Google Scholar] [CrossRef]
- Metrikine, A. On causality of the gradient elasticity models. J. Sound Vib. 2006, 297, 727–742. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 1992, 30, 1279–1299. [Google Scholar] [CrossRef]
- Askes, H.; Aifantis, E. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 2011, 48, 1962–1990. [Google Scholar] [CrossRef]
- Aifantis, E. Internal length gradient (ILG) material mechanics across scales and disciplines. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–110. [Google Scholar] [CrossRef]
- Foias, C.; Manley, O.; Rosa, R.; Temam, R. Navier-Stokes Equations and Turbulence; Cambridge University Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Kollmann, W. Navier-Stokes Turbulence; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Carrassi, M.; Morro, A. A modified Navier–Stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B 1972, 9, 321–343. [Google Scholar] [CrossRef]
- Carbonaro, B.; Rosso, F. Some remarks on a modified fluid dynamics equation. Rend. Del Circ. Mat. Di Palermo 1981, 30, 111–122. [Google Scholar] [CrossRef]
- Lebon, G.; Grmela, M. Weakly nonlocal heat conduction in rigid solids. Phys. Lett. A 1996, 214, 184–188. [Google Scholar] [CrossRef]
- Valanis, K.C. A gradient theory of internal variables. Acta Mech. 1996, 116, 1–14. [Google Scholar] [CrossRef]
- Maugin, G.A. On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 2006, 75, 723. [Google Scholar] [CrossRef]
- Müller, I. On the entropy inequality. Arch. Ration. Mech. Anal. 1967, 26, 118–141. [Google Scholar] [CrossRef]
- Müller, I. Thermodynamics; Pitman: Gloucester, NJ, USA, 1985. [Google Scholar]
- Grmela, M.; Jou, D.; Casas-Vázquez, J. Nonlinear and Hamiltonian extended irreversible thermodynamics. J. Chem. Phys. 1998, 108, 7937–7945. [Google Scholar] [CrossRef]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Johnson, C.R. Positive definite matrices. Am. Math. Mon. 1970, 77, 259–264. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Coleman, B.D.; Fabrizio, M.; Owen, D.R. On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 1982, 80, 135–158. [Google Scholar] [CrossRef]
- Coleman, B.D.; Fabrizio, M.; Owen, D.R. Thermodynamics and the Constitutive Relations for Second Sound in Crystals. In New Perspectives in Thermodynamics; Springer: Berlin/Heidelberg, Germany, 1986; pp. 171–185. [Google Scholar] [CrossRef]
- Giorgi, C. Continuum thermodynamics and phase-field models. Milan J. Math. 2009, 77, 67–100. [Google Scholar] [CrossRef]
- Berezovski, A. Internal variables associated with microstructures in solids. Mech. Res. Commun. 2018, 93, 30–34. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J.; Maugin, G.A. One-dimensional microstructure dynamics. In Mechanics of Microstructured Solids; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–28. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J.; Berezovski, M. Dispersive wave equations for solids with microstructure. In Vibration Problems ICOVP 2011; Springer: Cham, The Netherlands, 2011; pp. 699–705. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J.; Berezovski, M. Waves in microstructured solids: A unified viewpoint of modeling. Acta Mech. 2011, 220, 349–363. [Google Scholar] [CrossRef]
- Berezovski, A.; Ván, P. Internal Variables in Thermoelasticity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Rajagopal, K.R. A note on novel generalizations of the Maxwell fluid model. Int. J. Non-Linear Mech. 2012, 47, 72–76. [Google Scholar] [CrossRef]
- Yong, W.A. Newtonian limit of Maxwell fluid flows. Arch. Ration. Mech. Anal. 2014, 214, 913–922. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sader, J.E. Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids 2015, 27, 052002. [Google Scholar] [CrossRef]
- Hu, Y.; Racke, R. Compressible Navier–Stokes equations with revised Maxwell’s law. J. Math. Fluid Mech. 2017, 19, 77–90. [Google Scholar] [CrossRef]
- Wang, N.; Hu, Y. Blow up of solutions for compressible Navier–Stokes equations with revised Maxwell’s law. Appl. Math. Lett. 2020, 103, 106221. [Google Scholar] [CrossRef]
- Joseph, D.D. Fluid Dynamics of Viscoelastic Liquids; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Racke, R.; Saal, J. Hyperbolic Navier–Stokes equations I: Local well-posedness. Evol. Equ. Control Theory 2012, 1, 195–215. [Google Scholar] [CrossRef]
- Fried, E.; Gurtin, M.E. Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 2006, 182, 513–554. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J.; Maugin, G.A. Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 2011, 81, 229–240. [Google Scholar] [CrossRef]
- Berezovski, A. On the influence of microstructure on heat conduction in solids. Int. J. Heat Mass Transf. 2016, 103, 516–520. [Google Scholar] [CrossRef]
- Berezovski, A. Internal variables representation of generalized heat equations. Contin. Mech. Thermodyn. 2019, 31, 1733–1741. [Google Scholar] [CrossRef]
- Gurtin, M.E. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D Nonlinear Phenom. 1996, 3, 178–192. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J.; Ván, P. Weakly nonlocal thermoelasticity for microstructured solids: Microdeformation and microtemperature. Arch. Appl. Mech. 2014, 84, 1249–1261. [Google Scholar] [CrossRef]
- Berezovski, A.; Yildizdag, M.E.; Scerrato, D. On the wave dispersion in microstructured solids. Contin. Mech. Thermodyn. 2018, 32, 569–588. [Google Scholar] [CrossRef]
- Berezovski, A. Causality in strain gradient elasticity: An internal variables approach. Mech. Res. Commun. 2022, 125, 103997. [Google Scholar] [CrossRef]
- Steinbach, I. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 2009, 17, 073001. [Google Scholar] [CrossRef]
- Gomez, H.; van der Zee, K.G. Computational phase-field modeling. In Encyclopedia of Computational Mechanics, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–35. [Google Scholar] [CrossRef]
- Wu, J.Y.; Nguyen, V.P.; Nguyen, C.T.; Sutula, D.; Sinaie, S.; Bordas, S.P. Phase-field modeling of fracture. Adv. Appl. Mech. 2020, 53, 1–183. [Google Scholar] [CrossRef]
- Berti, A.; Giorgi, C. Phase-field modeling of transition and separation phenomena in continuum thermodynamics. Atti Della Accad. Peloritana Dei Pericolanti-Cl. Di Sci. Fis. Mat. E Nat. 2013, 91. [Google Scholar] [CrossRef]
- Berezovski, A.; Engelbrecht, J. Thermoelastic waves in microstructured solids: Dual internal variables approach. J. Coupled Syst. Multiscale Dyn. 2013, 1, 112–119. [Google Scholar] [CrossRef]
- Berezovski, A. Heat conduction in microstructured solids under localised pulse loading. Contin. Mech. Thermodyn. 2021, 33, 2493–2507. [Google Scholar] [CrossRef]
- Berezovski, A. Internal variables as a tool for extending Navier–Stokes equations. J. Non-Equilib. Thermodyn. 2022, 47, 241–254. [Google Scholar] [CrossRef]
- Gyarmati, I. On the wave approach of thermodynamics and some problems of non-linear theories. J. Non-Equilib. Thermodyn. 1977, 2, 233–260. [Google Scholar] [CrossRef]
- Verhás, J. Thermodynamics and Rheology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; Volume 38. [Google Scholar]
- Ván, P.; Berezovski, A.; Papenfuss, C. Thermodynamic approach to generalized continua. Contin. Mech. Thermodyn. 2014, 26, 403–420. [Google Scholar] [CrossRef]
- Asszonyi, C.; Fülöp, T.; Ván, P. Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 2015, 27, 971–986. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezovski, A. Constitutive Modeling with Single and Dual Internal Variables. Entropy 2023, 25, 721. https://doi.org/10.3390/e25050721
Berezovski A. Constitutive Modeling with Single and Dual Internal Variables. Entropy. 2023; 25(5):721. https://doi.org/10.3390/e25050721
Chicago/Turabian StyleBerezovski, Arkadi. 2023. "Constitutive Modeling with Single and Dual Internal Variables" Entropy 25, no. 5: 721. https://doi.org/10.3390/e25050721
APA StyleBerezovski, A. (2023). Constitutive Modeling with Single and Dual Internal Variables. Entropy, 25(5), 721. https://doi.org/10.3390/e25050721