An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method
Abstract
:1. Introduction
2. Problem and Notations
2.1. Maxwell’s Equations with Drude Model
2.2. Notations
3. HDG Formulations
4. An Optimized Schwarz Method
4.1. Optimized Parameters for Optimized Schwarz Method
4.2. HDG Discretization
- The model problem is split into some sub-problems with the corresponding subdomains which are discretized using an HDG method;
- Then we solve the resulting system of linear algebraic Equations (6) in each subdomain by a sparse direct solver;
- Finally, for the interface system between the two subdomains, solving the resulting linear systems (22) in the domain is accelerated using a Krylov subspace method.
5. Numerical Tests
5.1. Cylindrical Nanowire Problem
5.2. Dimer of Cylindrical Nanowires
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sattler, K.D. Handbook of Nanophysics: Nanoelectronics and Nanophotonics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Li, L.; Lanteri, S.; Mortensen, N.A.; Wubs, M. A hybridizable discontinuous Galerkin method for solving nonlocal optical response models. Comput. Phys. Commun. 2017, 219, 99–107. [Google Scholar] [CrossRef]
- Raza, S.; Bozhevolnyi, S.I.; Wubs, M.; Mortensen, N.A. Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter 2015, 27, 183204. [Google Scholar] [CrossRef]
- Mortensen, N.A.; Raza, S.; Wubs, M.; Bozhevolnyi, S.I.; Søndergaard, T. A generalized non-local optical response theory for plasmonic nanostructures. Nature Commun. 2014, 5, 3809. [Google Scholar] [CrossRef]
- Chaumont-Frelet, T.; Lanteri, S.; Vega, P. A posteriori error estimates for finite element discretizations of time-harmonic Maxwell’s equations coupled with a non-local hydrodynamic Drude model. Comput. Methods Appl. Mech. Eng. 2021, 385, 114002. [Google Scholar] [CrossRef]
- Aeschlimann, M.; Brixner, T.; Fischer, A.; Hensen, M.; Huber, B.; Kilbane, D.; Kramer, C.; Pfeiffer, W.; Piecuch, M.; Thielen, P. Determination of local optical response functions of nanostructures with increasing complexity by using single and coupled Lorentzian oscillator models. Appl. Phys. B 2016, 122, 199. [Google Scholar] [CrossRef]
- Sun, B.; Ji, B.; Lang, P.; Qin, Y.; Lin, J. Local near-field optical response of gold nanohole excited by propagating plasmonic excitations. Opt. Commun. 2022, 505, 127498. [Google Scholar] [CrossRef]
- Wen, S.-S.; Tian, M.; Yang, H.; Xie, S.-J.; Wang, X.-Y.; Li, Y.; Liu, J.; Peng, J.-Z.; Deng, K.; Zhao, H.-P.; et al. Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission. Chin. Phys. B 2021, 30, 027801. [Google Scholar] [CrossRef]
- Hesthaven, J.S.; Warburton, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, L.D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 2002, 39, 1749–1779. [Google Scholar] [CrossRef]
- Dolean, V.; Fol, H.; Lanteri, S.; Perrussel, R. Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods. J. Comput. Appl. Math. 2008, 218, 435–445. [Google Scholar] [CrossRef]
- Monk, P. Finite Elementlement Methods for Maxwell’s Equations, 1st ed.; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Cockburn, B.; Gopalakrishnan, J.; Lazarov, R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 2009, 47, 1319–1365. [Google Scholar] [CrossRef]
- Nguyen, N.C.; Peraire, J.; Cockburn, B. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 2011, 230, 7151–7175. [Google Scholar] [CrossRef]
- Li, L.; Lanteri, S.; Perrussel, R. Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell’s equations. Compel-Int. J. Comp. Math. Electr. Electron. Eng. 2013, 32, 1112–1138. [Google Scholar] [CrossRef]
- He, Y.-X.; Li, L.; Lanteri, S.; Huang, T.-Z. Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a hybridizable discontinuous Galerkin method. Comput. Phys. Commun. 2016, 200, 176–181. [Google Scholar] [CrossRef]
- Bouajaji, M.E.; Dolean, V.; Gander, M.J.; Lanteri, S. Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 2012, 34, 2048–2071. [Google Scholar] [CrossRef]
- Dolean, V.; Lanteri, S.; Perrussel, R. Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE Trans. Mag. 2008, 44, 954–957. [Google Scholar] [CrossRef]
- Li, L.; Lanteri, S.; Perrussel, R. A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equation. J. Comput. Phys. 2014, 256, 563–581. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]
- Kong, J.A. Electromagnetic Wave Theory; Wiley-Interscienc: New York, NY, USA, 1986. [Google Scholar]
- Li, K.; Huang, T.-Z.; Li, L.; Lanteri, S. Simulation of the interaction of light with 3-D metallic nanostructures using a proper orthogonal decomposition-Galerkin reduced-order discontinuous Galerkin time-domain method. Numer. Methods Partial Differ. Equ. 2023, 39, 932–954. [Google Scholar] [CrossRef]
- Dolean, V.; Gander, M.J.; Gerardo-Giorda, L. Optimized Schwarz methods for Maxwell’s equations. SIAM J. Sci. Comput. 2009, 31, 2193–2213. [Google Scholar] [CrossRef]
- Gander, M.J. Optimized Schwarz methods. SIAM J. Numer. Anal. 2006, 44, 699–731. [Google Scholar] [CrossRef]
- Bollhöfer, M.; Schenk, O.; Janalik, R.; Hamm, S.; Gullapalli, K. State-of-the-art sparse direct solvers. In Parallel Algorithms in Computational Science and Engineering; Grama, A., Sameh, A.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–33. [Google Scholar]
- Gu, X.-M.; Zhao, Y.; Huang, T.-Z.; Zhao, R. Efficient preconditioned iterative linear solvers for 3-D magnetostatic problems using edge elements. Adv. Appl. Math. Mech. 2021, 12, 301–318. [Google Scholar] [CrossRef]
- Hiremath, K.R.; Zschiedrich, L.; Schmidt, F. Numerical solution of nonlocal hydrodynamic drude model for arbitrary shaped nano-plasmonic structures using Nédélec finite elements. J. Comput. Phys. 2012, 231, 5890–5896. [Google Scholar] [CrossRef]
- Toscano, G.; Raza, S.; Jauho, A.-P.; Mortensen, N.A.; Wubs, M. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt. Express 2012, 20, 4176–4188. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-M.; Huang, T.-Z.; Li, L.; Li, H.-B.; Sogabe, T.; Clemens, M. Quasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electromagnetic simulations. IEEE Trans. Microw. Theory Techn. 2014, 62, 2859–2867. [Google Scholar] [CrossRef]
- Gu, X.-M.; Clemens, M.; Huang, T.-Z.; Li, L. The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems. Comput. Phys. Commun. 2015, 191, 52–64. [Google Scholar] [CrossRef]
Cases | ||
---|---|---|
classical | 1 | 1 |
case1 | 0.6711 | |
case2 | 0.9942 | |
case3 | 1.0059 | |
case4 | 1.4900 |
Nodes | Elements | Number of Subdomains | 2 | 4 | 8 | |
---|---|---|---|---|---|---|
Krylov Subspace Method | DD-Gmres | DD-Gmres | DD-Gmres | |||
1645 | 3288 | case1 | 46 | 51 | 59 | |
case2 | 50 | 60 | 74 | |||
case3 | 82 | 123 | 182 | |||
classical | 88 | 113 | 140 | |||
case1 | 39 | 43 | 50 | |||
case2 | 53 | 67 | 86 | |||
case3 | 100 | 169 | 267 | |||
classical | 65 | 83 | 100 |
Nodes | Elements | Number of Subdomains | 2 | 4 | 8 | |
---|---|---|---|---|---|---|
Krylov Subspace Method | DD-Gmres | DD-Gmres | DD-Gmres | |||
6513 | 13,024 | case1 | 69 | 95 | 117 | |
case2 | 73 | 104 | 131 | |||
case3 | 111 | 189 | 293 | |||
classical | 122 | 184 | 232 | |||
case1 | 46 | 52 | 65 | |||
case2 | 60 | 80 | 105 | |||
case3 | 125 | 217 | 366 | |||
classical | 73 | 103 | 126 |
Interpolation Order | 1 | 2 | 3 |
---|---|---|---|
case1 | 46 | 56 | 65 |
case2 | 60 | 70 | 78 |
case3 | 125 | 137 | 149 |
classical | 73 | 84 | 94 |
Number of Subdomains | 2 | 4 | ||||||
---|---|---|---|---|---|---|---|---|
Value of | ||||||||
case1 | 46 | 48 | 45 | 49 | 52 | 55 | 52 | 56 |
case2 | 60 | 58 | 57 | 61 | 80 | 81 | 79 | 83 |
case3 | 125 | 131 | 127 | 127 | 217 | 229 | 221 | 224 |
classical | 73 | 85 | 78 | 84 | 103 | 119 | 107 | 120 |
Nodes | Elements | Number of Subdomains | 16 | 32 | 64 | |
---|---|---|---|---|---|---|
Krylov Subspace Method | DD-Gmres | DD-Gmres | DD-Gmres | |||
1114 | 2226 | case1 | 269 | 306 | 350 | |
case2 | 278 | 317 | 397 | |||
case3 | 400 | 508 | 632 | |||
classical | 353 | 434 | 571 |
Interpolation Order | 1 | 2 | 3 |
---|---|---|---|
case1 | 79 | 104 | 119 |
case2 | 82 | 108 | 120 |
case3 | 123 | 170 | 203 |
classical | 102 | 137 | 157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-F.; Gu, X.-M.; Li, L.; Zhou, P. An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method. Entropy 2023, 25, 693. https://doi.org/10.3390/e25040693
Chen J-F, Gu X-M, Li L, Zhou P. An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method. Entropy. 2023; 25(4):693. https://doi.org/10.3390/e25040693
Chicago/Turabian StyleChen, Jia-Fen, Xian-Ming Gu, Liang Li, and Ping Zhou. 2023. "An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method" Entropy 25, no. 4: 693. https://doi.org/10.3390/e25040693
APA StyleChen, J.-F., Gu, X.-M., Li, L., & Zhou, P. (2023). An Optimized Schwarz Method for the Optical Response Model Discretized by HDG Method. Entropy, 25(4), 693. https://doi.org/10.3390/e25040693