Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks
Abstract
:1. Introduction
2. QKD Network Architecture
3. Problem and Algorithm Formulation
3.1. QKD Network Model
3.2. Cost Model
3.3. Heuristic Algorithm
Algorithm 1: Hybrid QKD Network Cost (HQNC) Algorithm. |
Input: , R, D, , , , , , , . |
Output: , routing, and wavelength allocation for each QKD request, update QKD network’s state: |
1. Initialize ; . |
2. For each QKD network request , do: |
3. Initialize , , , . |
4. Routing computation with Dijkstra’s shortest path algorithm. |
5. Compute the physical distance between the QBN source node and destination node |
of the r on the shortest path Or. |
6. Compute the required number of QChs . |
7. Search all available wavelength channels, and store them in as the QChs on the shortest |
path Or. |
8. If , then |
9. Filter wavelength channels from using first-fit algorithm for QKD request r. |
10. Search all available wavelength channels, and store them in as the KM links on the |
shortest path Or. |
11. If , then |
12. filter one wavelength channel from using first-fit algorithm for QKD request r. |
13. For the shortest path Or of QKD request r, do: |
14. Compute the required number of QKD transmitters and R: |
15. ; |
16. . |
17. Compute the required number of KSs and MODs of the QKD request r: |
18. ; |
19. . |
20. Compute the required length of links of the QKD request located in: |
21. . |
22. End for |
23. The total cost: |
24. . |
25. Else: |
26. The secret-key rate demand of QKD request r cannot be satisfied. |
27. Else: |
28. The secret-key rate demand of QKD request r cannot be satisfied. |
29. End |
30. The total cost for all QKD requests . |
31. Return , routing, and wavelength allocation for each QKD request, and update QKD links’ state. |
4. Performance Evaluation and Analysis
4.1. QKD Network Critical Device Requirements Analysis
QKD Transmitter and Receiver Number
4.2. QKD Network Total Deployment Cost Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Yu, X. Multi-tenant provisioning over software defined networking enabled metropolitan area quantum key distribution networks. J. Opt. Soc. Am. 2019, 36, 3. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Lin, R.; Yu, X.; Zhang, J.; Chen, J. Multi-tenant secret-key assignment over quantum key distribution networks. Opt Express 2019, 27, 2544–2561. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, C.; Liu, Y.; Jiang, C.; Zhang, W.; Hu, X.L.; Guan, J.Y.; Yu, Z.W.; Xu, H.; Lin, J.; et al. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 2020, 124, 070501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Dynes, J.F.; Wonfor, A.; Tam, W.W.-S.; Sharpe, A.W.; Takahashi, R.; Lucamarini, M.; Plews, A.; Yuan, Z.L.; Dixon, A.R.; Cho, J.; et al. Cambridge quantum network. NPJ Quantum Inf. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Sangouard, N.; Simon, C.; de Riedmatten, H.; Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33–80. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.D.; Zhang, R.; Yin, X.F.; Liu, L.Z.; Hu, Y.Q.; Fang, Y.; Fei, Y.Y.; Jiang, X.; Zhang, J.; Li, L.; et al. Experimental quantum repeater without quantum memory. Nat. Photonics 2019, 13, 644–648. [Google Scholar] [CrossRef]
- Kadhim, M.H.; Hasan, J.K.; Alhumaima, R.S. Performance Analysis of Quantum Repeaters Based Hybrid Communications Networks. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1076, 1. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Zou, X.; Cao, Y.; Zhao, Y.; Nag, A.; Zhang, J. Secret-Key Provisioning With Collaborative Routing in Partially-Trusted-Relay-based Quantum-Key-Distribution-Secured Optical Networks. J. Light. Technol. 2022, 40, 3530–3545. [Google Scholar] [CrossRef]
- Han, W.; Wu, X.R.; Zhu, Y.; Zhang, W.; Zhou, B. The Trust Relay QKD Network Communication Research. Adv. Mater. Res. 2013, 709, 421–426. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Li, J.; Lin, R.; Zhang, J.; Chen, J. Hybrid Trusted/Untrusted Relay-Based Quantum Key Distribution Over Optical Backbone Networks. IEEE J. Sel. Areas Commun. 2021, 39, 2701–2718. [Google Scholar] [CrossRef]
- Tayduganov, A.; Rodimin, V.; Kiktenko, E.O.; Kurochkin, V.; Krivoshein, E.; Khanenkov, S.; Usova, V.; Stefanenko, L.; Kurochkin, Y.; Fedorov, A.K. Optimizing the deployment of quantum key distribution switch-based networks. Opt Express 2021, 29, 24884–24898. [Google Scholar] [CrossRef]
- Hua, X.; Hu, M.; Guo, B. Multi-User Measurement-Device-Independent Quantum Key Distribution Based on GHZ Entangled State. Entropy 2022, 24, 6. [Google Scholar] [CrossRef]
- Donkor, E.J.; Elliott, C.; Colvin, A. Current status of the DARPA quantum network (Invited Paper). Quantum Inf. Comput. III 2005, 2005, 138–149. [Google Scholar]
- Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J.F.; et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 2009, 11, 075001. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Tanaka, A.; Yoshino, K.; Nambu, Y.; Takahashi, S.; et al. Field test of quantum key distribution in the Tokyo QKD Network. arXiv 2011, arXiv:1103.3566. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [Green Version]
- Valivarthi1, R.; Umesh, P.; John, C.; Owen, K.A.; Verma, V.B.; Nam, S.W.; Oblak, D.; Zhou, Q.; Tittel, W. Measurement-device-independent quantum key distribution coexisting with classical communication. Quantum Sci. Technol. 2019, 4, 4. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wu, Y.; Yu, X.; Zhang, J. Time-Scheduled Quantum Key Distribution (QKD) Over WDM Networks. J. Light. Technol. 2018, 36, 3382–3395. [Google Scholar] [CrossRef]
- Yu, X.; Liu, X.; Liu, Y.; Nag, A.; Zou, X.; Zhao, Y.; Zhang, J. Multi-path-based quasi-real-time key provisioning in quantum-key-distribution enabled optical networks (QKD-ON). Opt. Express 2021, 29, 21225–21239. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Sun, Y.; Jia, X.; Ji, Y. Key-Size-Driven Wavelength Resource Sharing Scheme for QKD and the Time-Varying Data Services. J. Light. Technol. 2021, 39, 2661–2672. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Colman-Meixner, C.; Yu, X.; Zhang, J. Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD). Opt Express 2017, 25, 26453–26467. [Google Scholar] [CrossRef]
- Tang, Y.L.; Yin, H.L.; Zhao, Q.; Liu, H.; Sun, X.X.; Huang, M.Q.; Zhang, W.J.; Chen, S.J.; Zhang, L.; You, L.X.; et al. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network. Phys. Rev. 2016, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, W.; Wei, K.; Fang, X.; Li, L.; Liu, N.; Liang, H.; Zhang, S.; Zhang, W.; Li, H.; et al. Experimental Demonstration of High-Rate Measurement-Device-Independent Quantum Key Distribution over Asymmetric Channels. Phys. Rev. Lett. 2019, 122, 160501. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhao, Y.; Yu, X.; Wu, Y. Resource Assignment Strategy in Optical Networks Integrated With Quantum Key Distribution. J. Opt. Commun. Netw. 2017, 9, 11. [Google Scholar] [CrossRef]
- Aguado, A.; Lopez, V.; Martinez-Mateo, J.; Peev, M.; Lopez, D.; Martin, V. Virtual Network Function Deployment and Service Automation to Provide End-to-End Quantum Encryption. J. Opt. Commun. Netw. 2018, 10, 4. [Google Scholar] [CrossRef]
- “Understanding Quantum Cryptography,” IDQ White Paper [Online]. Available online: https://marketing.idquantique.com/acton/attachment/11868/f-020d/1/-/-/-/-/Understanding%20Quantum%20Cryptography_White%20Paper.pdf (accessed on 7 April 2023).
- Cao, Y.; Zhao, Y.; Wang, J.; Yu, X.; Ma, Z.; Zhang, J. Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks. J. Opt. Commun. Netw. 2019, 11, 6. [Google Scholar] [CrossRef]
- Aleksic, S.; Hipp, F.; Winkler, D.; Poppe, A.; Schrenk, B.; Franzl, G. Perspectives and limitations of QKD integration in metropolitan area networks. Opt. Express 2015, 23, 10359–10373. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, A.; Ld, A.; Spiller, T. Quantum key distribution integration with optical dense wavelength division multiplexing: A review. IET Quantum Commun. 2020, 1, 9–15. [Google Scholar] [CrossRef]
Network | Node Number | Relay |
---|---|---|
DARPA quantum network [16] | 10 | Trusted relay |
Optical switch | ||
SECOQC quantum network [17] | 6 | Trusted relay |
Tokyo quantum network [18] network | 6 | Trusted relay |
Space-to-ground quantum network [6] | 32 | Trusted relay |
Abbreviations | Definitions |
---|---|
QKD | Quantum Key Distribution |
MDI | Measurement-Device-Independent |
QKP | Quantum Key Pool |
SDN | Software-Defined Network |
HQNC | Hybrid QKD Network Cost |
HTUR | Hybrid Trusted and Untrusted Relay |
CO-QBN | Cost-Optimized QKD Backbone Networking |
PTR | Purely Trusted Relay |
API | Application Programming Interface |
QTs | Quantum Transmitters |
QRs | Quantum Receivers |
KM | Key Management |
KS | Key Service |
OSs | Optical Switches |
EDFA | Erbium-Doped Fiber Amplifiers |
MOD | Multiplex/Demultiplex |
CS | Current Scenario |
FS | Future Scenario |
PCh | Public Channel |
DCh | Data Channel |
QCh | Quantum Channel |
NSFNET | National Science Foundation Network |
USNET | United States Network |
Symbols | Definitions |
---|---|
Optical/QKD network topology | |
N | Set of optical/QKD nodes |
L | Set of QKD links |
m | The distance between QKD Node 1/trusted relay and untrusted relay |
A QKD request between two arbitrary distant QKD nodes | |
R | Total QKD requests in QKD backbone network |
The number of parallel QKD links of r | |
Secret key rate of r | |
D | The distance of a pair of MDI-QTs |
The secret key rate at distance D | |
Set of fiber links on the path of r | |
Set of fiber links between QBNs and | |
The wavelength of QKD link | |
The wavelength of KM link | |
Index of QBN nodes in QKD network topology . | |
Set of wavelength channels planned as QChs | |
Set of wavelength channels planned as KM | |
Required number of MDI-QTs for r | |
Required number of MDI-QRs for r | |
Required number of KSs for r | |
Required number of pairs of Multiplexes/Demultiplexes (MODs) for r | |
Cost of an MDI-QTs for r | |
Cost of an MDI-QRs for r | |
Cost of a KS for r | |
Cost of a pair of MODs for r | |
Cost per kilometer of a wavelength channel on a fiber link | |
Cost of MDI-QTs for all QKD link requests R | |
Cost of MDI-QRs for all QKD link requests R | |
Cost of KS for all QKD link requests R | |
Cost of QKD and KM link for all QKD link requests R | |
Cost of pairs of MODs for all QKD link requests R | |
Total cost of deployment QKD backbone network | |
Boolean variable that equals 1 if wavelength on link is assigned to the QKD link of r, and 0 otherwise | |
Boolean variable that equals 1 if wavelength on link is assigned to the KM link of r, and 0 otherwise |
Different Situations | |R| | Scenario | ($) | ($) | ($) | ($) | ($) |
---|---|---|---|---|---|---|---|
HQNC | |R| > 0 | CS | 6600 | 15,000 | 135 | 5000 | 200 |
FS | 3000 | 8000 | 60 | 2500 | 100 | ||
PTR | |R|> 0 | CS | 6600 | 15,000 | 135 | 5000 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Dong, B.; Kang, L.; Xie, H.; Guo, B. Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks. Entropy 2023, 25, 661. https://doi.org/10.3390/e25040661
Jia J, Dong B, Kang L, Xie H, Guo B. Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks. Entropy. 2023; 25(4):661. https://doi.org/10.3390/e25040661
Chicago/Turabian StyleJia, Jie, Bowen Dong, Le Kang, Huanwen Xie, and Banghong Guo. 2023. "Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks" Entropy 25, no. 4: 661. https://doi.org/10.3390/e25040661
APA StyleJia, J., Dong, B., Kang, L., Xie, H., & Guo, B. (2023). Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks. Entropy, 25(4), 661. https://doi.org/10.3390/e25040661