# Integrated Multiresonator Quantum Memory

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical Model

## 3. Efficiency Optimization Procedure

## 4. Recording Dynamics

## 5. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Moody, G.; Sorger, V.J.; Blumenthal, D.J.; Juodawlkis, P.W.; Loh, W.; Sorace-Agaskar, C.; Jones, A.E.; Balram, K.C.; Matthews, J.C.; Laing, A.; et al. Roadmap on integrated quantum photonics. J. Phys. Photonics
**2022**, 4, 0125501. [Google Scholar] [CrossRef] - Blais, A.; Girvin, S.M.; Oliver, V.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys.
**2020**, 16, 247–256. [Google Scholar] [CrossRef] - Hammerer, K.; Sørensen, A.S.; Polzik, E.S. Quantum interface between light and atomic ensembles. Nat. Phys.
**2010**, 82, 1041–1093. [Google Scholar] [CrossRef] - Lvovsky, A.I.; Sanders, B.C.; Tittel, W. Optical quantum memory. Nat. Photonics
**2009**, 3, 706–714. [Google Scholar] [CrossRef] - Khabat, H.; Duncan, G.E.; Peter, C.H.; Philip, J.B.; Victor, M.A.; Joshua, N.; Benjamin, J.S. Quantum memories: Emerging applications and recent advances. J. Mod. Opt.
**2016**, 63, 2005–2028. [Google Scholar] - Chanelière, T.; Hétet, G.; Sangouard, N. Quantum Optical Memory Protocols in Atomic Ensembles. In Advances in Atomic, Molecular and Optical Physics; Academic Press: Cambridge, MA, USA, 2018; Volume 67, pp. 77–150. [Google Scholar]
- Cirac, J.I.; Zoller, P.; Kimble, H.J.; Mabuchi, H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett.
**1997**, 78, 3221–3224. [Google Scholar] [CrossRef] [Green Version] - Fleischhauer, M.; Yelin, S.F.; Lukin, M.D. How to trap photons? Storing single-photon quantum states in collective atomic excitations. Opt. Commun.
**2000**, 179, 395–410. [Google Scholar] [CrossRef] [Green Version] - Gorshkov, A.V.; André, A.; Lukin, M.D.; Sørensen, A.S. Photon storage in Λ-type optically dense atomic media. I. Cavity model. Phys. Rev. A
**2007**, 76, 033804. [Google Scholar] [CrossRef] - Boozer, A.D.; Boca, A.; Miller, R.; Northup, T.E.; Kimble, H.J. Reversible State Transfer between Light and a Single Trapped Atom. Phys. Rev. Lett.
**2007**, 98, 193601. [Google Scholar] [CrossRef] [Green Version] - Moiseev, S.A.; Andrianov, S.N.; Gubaidullin, F.F. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A
**2010**, 82, 022311. [Google Scholar] [CrossRef] [Green Version] - Afzelius, M.; Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A
**2010**, 82, 022310. [Google Scholar] [CrossRef] [Green Version] - Dilley, J.; Nisbet-Jones, P.; Shore, B.W.; Kuhn, A. Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A
**2012**, 85, 023834. [Google Scholar] [CrossRef] [Green Version] - Reiserer, A.; Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys.
**2015**, 87, 1379–1418. [Google Scholar] [CrossRef] [Green Version] - Fleischhauer, M.; Lukin, M.D. Quantum memory for photons: Dark-state polaritons. Phys. Rev. A
**2002**, 65, 022314. [Google Scholar] [CrossRef] [Green Version] - Leia, X.; Maa, L.; Yana, J.; Zhoua, X.; Yan, Z.; Jia, X. Electromagnetically induced transparency quantum memory for non-classical states of light. Adv. Phys. X
**2022**, 7, 2060133. [Google Scholar] [CrossRef] - Akhmedzhanov, R.A.; Gushchin, L.A.; Kalachev, A.A.; Korableva, S.L.; Sobgayda, D.A.; Zelensky, I.V. Atomic frequency comb memory in an isotopically pure
^{143}Nd_{3+}:Y_{7}LiF_{4}crystal. Laser Phys. Lett.**2016**, 13, 015202. [Google Scholar] [CrossRef] - Minnegaliev, M.M.; Gerasimov, K.I.; Urmancheev, R.V.; Zheltikov, A.M.; Moiseev, S.A. Linear Stark effect in Y
_{3}Al_{5}O_{12}:Tm^{3+}crystal and its application in the addressable quantum memory protocol. Phys. Rev. B**2021**, 103, 174110. [Google Scholar] [CrossRef] - Sabooni, M.; Li, Q.; Kröll, S.; Rippe, L. Efficient Quantum Memory Using a Weakly Absorbing Sample. Phys. Rev. Lett.
**2013**, 110, 133604. [Google Scholar] [CrossRef] [Green Version] - Davidson, J.H.; Lefebvre, P.; Zhang, J.; Oblak, D.; Tittel, W. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys. Rev. A
**2020**, 101, 042333. [Google Scholar] [CrossRef] - Jobez, P.; Usmani, I.; Timoney, N.; Laplane, C.; Gisin, N.; Afzelius, M. Cavity-enhanced storage in an optical spin-wave memory. New J. Phys.
**2014**, 16, 083005. [Google Scholar] [CrossRef] - Moiseev, E.S.; Tashchilina, A.; Moiseev, S.A.; Sanders, B.C. Broadband quantum memory in a cavity via zero spectral dispersion. New J. Phys.
**2021**, 23, 063071. [Google Scholar] [CrossRef] - Ranjan, V.; O’sullivan, J.; Albertinale, E.; Albanese, B.; Chanelière, T.; Schenkel, T.; Vion, D.; Esteve, D.; Flurin, E.; Morton, J.J.L.; et al. Multimode Storage of Quantum Microwave Fields in Electron Spins over 100 ms. Phys. Rev. Lett.
**2020**, 125, 210505. [Google Scholar] [CrossRef] [PubMed] - Julsgaard, B.; Grezes, C.; Bertet, P.; Mölmer, K. Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble. Phys. Rev. Lett.
**2013**, 110, 250503. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Grezes, C.; Julsgaard, B.; Kubo, Y.; Stern, M.; Umeda, T.; Isoya, J.; Sumiya, H.; Abe, H.; Onoda, S.; Ohshima, T.; et al. Multimode Storage and Retrieval of Microwave Fields in a Spin Ensemble, Esteve, K. Mölmer, and P. Bertet. Phys. Rev. X
**2014**, 4, 021049. [Google Scholar] - Ball, J.R.; Yashiro, Y.; Sumiya, H.; Onoda, S.; Ohshima, T.; Isoya, J.; Konstantinov, D.; Kubo, Y. Loop-gap microwave resonator for hybrid quantum systems. Appl. Phys. Lett.
**2018**, 112, 204102. [Google Scholar] [CrossRef] [Green Version] - Moiseev, S.A.; Gerasimov, K.I.; Latypov, R.R.; Perminov, N.S.; Petrovnin, K.V.; Sherstyukov, O.N. Broadband multiresonator quantum memory-interface. Sci. Rep.
**2018**, 8, 3982. [Google Scholar] [CrossRef] [Green Version] - Li, Y.; Abolmaali, F.; Allen, K.W.; Limberopoulos, N.I.; Urbas, A.; Rakovich, Y.; Maslov, A.V.; Astratov, V.N. Whispering gallery mode hybridization in photonic molecules. Laser Photonics Rev.
**2017**, 11, 1600278. [Google Scholar] [CrossRef] [Green Version] - McKay, D.C.; Naik, R.; Reinhold, P.; Bishop, L.S.; Schuster, D.I. High-Contrast Qubit Interactions Using Multimode Cavity QED. Phys. Rev. Lett.
**2015**, 114, 080501. [Google Scholar] [CrossRef] [Green Version] - Naik, R.K.; Leung, N.; Chakram, S.; Groszkowski, P.; Lu, Y.; Earnest, N.; McKay, D.C.; Koch, J.; Schuster, D.I. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun.
**2017**, 8, 1904. [Google Scholar] [CrossRef] [Green Version] - Bao, Z.; Wang, Z.; Wu, Y.; Li, Y.; Ma, C.; Song, Y.; Zhang, H.; Duan, L. On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory. Phys. Rev. Lett.
**2021**, 127, 010503. [Google Scholar] [CrossRef] - Matanin, A.R.; Gerasimov, K.I.; Moiseev, E.S.; Smirnov, N.S.; Ivanov, A.I.; Malevannaya, E.I.; Polozov, V.I.; Zikiy, E.V.; Samoilov, A.A.; Rodionov, I.A.; et al. Towards highly efficient broadband superconducting quantum memory. Phys. Rev. Appl.
**2023**, 19, 034011. [Google Scholar] [CrossRef] - Perminov, N.S.; Moiseev, S.A. Spectral-Topological Superefficient Quantum Memory. Sci. Rep.
**2019**, 9, 1568. [Google Scholar] [CrossRef] [Green Version] - Flurin, E.; Roch, N.; Pillet, J.D.; Mallet, F.; Huard, B. Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation. Phys. Rev. Lett.
**2015**, 114, 090503. [Google Scholar] [CrossRef] [Green Version] - Moiseev, S.A.; Perminov, N.S. Multiresonator Quantum Memory with Switcher. JETP Lett.
**2020**, 111, 500–505. [Google Scholar] [CrossRef] - Walls, D.F.; Milburn, G.J. Quantum Optics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Lalumière, K.; Sanders, B.C.; van Loo, A.F.; Fedorov, A.; Wallraff, A.; Blais, A. Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A
**2013**, 88, 043806. [Google Scholar] [CrossRef] [Green Version] - Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Dubetskii, B.Y.; Chebotaev, V.P. Echos in classical and quantum ensembles with determinate frequencies. JETP Lett.
**1985**, 41, 267–269. [Google Scholar] - de Riedmatten, H.; Afzelius, M.; Staudt, M.U.; Simon, C.; Gisin, N. A solid-state light-matter interface at the single-photon level. Nature
**2008**, 456, 773–777. [Google Scholar] [CrossRef] [Green Version] - Yang, K.Y.; Beha, K.; Cole, D.C.; Yi, X.; Del’Haye, P.; Lee, H.; Li, J.; Oh, D.Y.; Diddams, S.A.; Papp, S.B.; et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics
**2016**, 10, 316–320. [Google Scholar] [CrossRef] - Yang, K. Integrated Ultra-High-Q Nonlinear Photonic Platform for on-Chip Optoelectronic Systems. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, USA, 2018. [Google Scholar]
- Craiciu, I.; Lei, M.; Rochman, J.; Kindem, J.M.; Bartholomew, J.G.; Miyazono, E.; Zhong, T.; Sinclair, N.; Faraon, A. Nanophotonic Quantum Storage at Telecommunication Wavelength. Phys. Rev. Appl.
**2019**, 12, 024062. [Google Scholar] [CrossRef] [Green Version] - Yang, K.Y.; Oh, D.Y.; Lee, S.H.; Yang, Q.-F.; Yi, X.; Shen, B.; Wang, H.; Vahala, K. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photonics
**2018**, 12, 297–302. [Google Scholar] [CrossRef] [Green Version] - Anderson, M.; Pavlov, N.G.; Jost, J.D.; Lihachev, G.; Liu, J.; Morais, T.; Zervas, M.; Gorodetsky, M.L.; Kippenberg, T.J. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Opt. Lett.
**2018**, 43, 2106–2109. [Google Scholar] [CrossRef] [PubMed] - Gao, R.; Yao, N.; Guan, J.; Deng, L.; Lin, J.; Wang, M.; Qiao, L.; Fang, W.; Cheng, Y. Lithium niobate microring with ultra-high Q factor above 10
^{8}. Chin. Opt. Lett.**2022**, 20, 011902. [Google Scholar] [CrossRef] - Gao, R.; Zhang, H.; Bo, F.; Fang, W.; Hao, Z.; Yao, N.; Lin, J.; Guan, J.; Deng, L.; Lin, J.; et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10
^{8}. New J. Phys.**2021**, 23, 123027. [Google Scholar] - Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun.
**2020**, 11, 4123. [Google Scholar] [CrossRef] - Ahmed, A.N.R.; Shi, S.; Mercante, A.J.; Prather, D.W. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform. Opt. Express
**2019**, 21, 30741–30751. [Google Scholar] [CrossRef] - Moiseev, S.A.; Perminov, N.S.; Zheltikov, A.M. Multiresonator Quantum Memory with Single Atoms. JETP Lett.
**2022**, 115, 318–323. [Google Scholar] [CrossRef] - Arcangeli, A.; Ferrier, A.; Goldner, P. Stark echo modulation for quantum memories. Phys. Rev. A
**2016**, 93, 062303. [Google Scholar] [CrossRef] [Green Version] - Ham, B.S. A controlled ac Stark echo for quantum memories. Sci. Rep.
**2017**, 7, 7655. [Google Scholar] [CrossRef] [Green Version] - Ham, B.S. A wavelength-convertible quantum memory: Controlled echo. Sci. Rep.
**2018**, 8, 10675. [Google Scholar] [CrossRef] [Green Version] - Alqedra, M.K.; Horvath, S.P.; Kinos, A.; Walther, A.; Kröll, S.; Rippe, L. Stark control of solid-state quantum memory with spin-wave storage. arXiv
**2022**, arXiv:2211.17206. [Google Scholar]

**Figure 1.**Principal scheme of a multiresonator QM with switcher, which is integrated with an external waveguide.

**Figure 2.**QM eigenfrequencies ${E}_{n}=Re\left({\omega}_{n}\right)$ for ${f}_{n}=1.119\xb7[1,1,1]$—dashed line, ${f}_{n}=1.038\xb7[0.8,1,0.8]$—solid line.

**Figure 3.**Relative phase delay ${\tau}_{r}=\tau \left(\omega \right)/\tau \left(0\right)$ for multiplicity spectra type $[-4,-1,1,4]$—dashed line, and equidistant spectra type $[-3,-1,1,3]$—solid line.

**Figure 4.**Relative intensity $J\left(t\right)$ of the echo signal for a Gaussian-type pulse with half-width $\sigma \approx 1$ for equidistant spectra type $[-3,-1,1,3]$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Perminov, N.S.; Moiseev, S.A.
Integrated Multiresonator Quantum Memory. *Entropy* **2023**, *25*, 623.
https://doi.org/10.3390/e25040623

**AMA Style**

Perminov NS, Moiseev SA.
Integrated Multiresonator Quantum Memory. *Entropy*. 2023; 25(4):623.
https://doi.org/10.3390/e25040623

**Chicago/Turabian Style**

Perminov, Nikolay Sergeevich, and Sergey Andreevich Moiseev.
2023. "Integrated Multiresonator Quantum Memory" *Entropy* 25, no. 4: 623.
https://doi.org/10.3390/e25040623