# Generation of Pseudo-Random Quantum States on Actual Quantum Processors

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Generation of Pseudo-Random Quantum States

#### 2.1. Cartan’s KAK Decomposition of the Unitary Group

#### 2.2. Direct Generation of Two-Qubit Random Quantum States

#### 2.3. Comparison of KAK and Direct Method

## 3. Results on Actual Quantum Hardware

#### 3.1. Comparison between Hardware Platforms

#### 3.2. Entanglement Evolution

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Random State Purities Moments

## Appendix B. Cartan’s KAK Decomposition of the Unitary Group

**Figure A1.**A quantum circuit implementing a two-qubit unitary gate using the KAK parametrization of $SU\left(4\right)$.

## References

- Benenti, G.; Casati, G.; Rossini, D.; Strini, G. Principles of Quantum Computation and Information (A Comprehensive Textbook); World Scientific: Singapore, 2019. [Google Scholar]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum
**2018**, 2, 79. [Google Scholar] [CrossRef] - Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature
**2019**, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science
**2020**, 370, 1460–1463. [Google Scholar] [CrossRef] [PubMed] - Daley, A.J.; Bloch, I.; Kokail, C.; Flannigan, S.; Pearson, N.; Troyer, M.; Zoller, P. Practical quantum advantage in quantum simulation. Nature
**2022**, 607, 667–676. [Google Scholar] [CrossRef] - Liu, Y.A.; Liu, X.L.; Li, F.N.; Fu, H.; Yang, Y.; Song, J.; Zhao, P.; Wang, Z.; Peng, D.; Chen, H.; et al. Closing the “Quantum Supremacy” Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MI, USA, 18 November 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Bulmer, J.F.F.; Bell, B.A.; Chadwick, R.S.; Jones, A.E.; Moise, D.; Rigazzi, A.; Thorbecke, J.; Haus, U.U.; Vaerenbergh, T.V.; Patel, R.B.; et al. The boundary for quantum advantage in Gaussian boson sampling. Sci. Adv.
**2022**, 8, eabl9236. [Google Scholar] [CrossRef] - Zhou, Y.; Stoudenmire, E.M.; Waintal, X. What Limits the Simulation of Quantum Computers? Phys. Rev. X
**2020**, 10, 041038. [Google Scholar] [CrossRef] - Cross, A.W.; Bishop, L.S.; Sheldon, S.; Nation, P.D.; Gambetta, J.M. Validating quantum computers using randomized model circuits. Phys. Rev. A
**2019**, 100, 032328. [Google Scholar] [CrossRef] [Green Version] - Pizzamiglio, A.; Chang, S.Y.; Bondani, M.; Montangero, S.; Gerace, D.; Benenti, G. Dynamical Localization Simulated on Actual Quantum Hardware. Entropy
**2021**, 23, 654. [Google Scholar] [CrossRef] - Keenan, N.; Robertson, N.; Murphy, T.; Zhuk, S.; Goold, J. Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator. arXiv
**2022**, arXiv:2208.12243. [Google Scholar] [CrossRef] - Plenio, M.B.; Virmani, S. An Introduction to Entanglement Measures. Quantum Info. Comput.
**2007**, 7, 1–51. [Google Scholar] [CrossRef] - Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys.
**2009**, 81, 865–942. [Google Scholar] [CrossRef] [Green Version] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Facchi, P.; Florio, G.; Pascazio, S. Probability-density-function characterization of multipartite entanglement. Phys. Rev. A
**2006**, 74, 042331. [Google Scholar] [CrossRef] [Green Version] - Brydges, T.; Elben, A.; Jurcevic, P.; Vermersch, B.; Maier, C.; Lanyon, B.P.; Zoller, P.; Blatt, R.; Roos, C.F. Probing Rényi entanglement entropy via randomized measurements. Science
**2019**, 364, 260–263. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brandão, F.G.; Chemissany, W.; Hunter-Jones, N.; Kueng, R.; Preskill, J. Models of Quantum Complexity Growth. PRX Quantum
**2021**, 2, 030316. [Google Scholar] [CrossRef] - Hayden, P.; Preskill, J. Black holes as mirrors: Quantum information in random subsystems. J. High Energy Phys.
**2007**, 2007, 120. [Google Scholar] [CrossRef] [Green Version] - Choi, J.; Shaw, A.L.; Madjarov, I.S.; Xie, X.; Finkelstein, R.; Covey, J.P.; Cotler, J.S.; Mark, D.K.; Huang, H.Y.; Kale, A.; et al. Preparing random states and benchmarking with many-body quantum chaos. Nature
**2023**, 613, 468–473. [Google Scholar] [CrossRef] - Vatan, F.; Williams, C. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A
**2004**, 69, 032315. [Google Scholar] [CrossRef] [Green Version] - Giraud, O. Distribution of bipartite entanglement for random pure states. J. Phys. A Math. Theor.
**2007**, 40, 2793. [Google Scholar] [CrossRef] - Lloyd, S.; Pagels, H. Complexity as thermodynamic depth. Ann. Phys.
**1988**, 188, 186–213. [Google Scholar] [CrossRef] - Emerson, J.; Weinstein, Y.S.; Saraceno, M.; Lloyd, S.; Cory, D.G. Pseudo-Random Unitary Operators for Quantum Information Processing. Science
**2003**, 302, 2098–2100. [Google Scholar] [CrossRef] [Green Version] - Emerson, J.; Livine, E.; Lloyd, S. Convergence conditions for random quantum circuits. Phys. Rev. A
**2005**, 72, 060302. [Google Scholar] [CrossRef] [Green Version] - Weinstein, Y.S.; Hellberg, C.S. Entanglement Generation of Nearly Random Operators. Phys. Rev. Lett.
**2005**, 95, 030501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dahlsten, O.C.O.; Oliveira, R.; Plenio, M.B. The emergence of typical entanglement in two-party random processes. J. Phys. A Math. Theor.
**2007**, 40, 8081. [Google Scholar] [CrossRef] [Green Version] - Oliveira, R.; Dahlsten, O.C.O.; Plenio, M.B. Generic Entanglement Can Be Generated Efficiently. Phys. Rev. Lett.
**2007**, 98, 130502. [Google Scholar] [CrossRef] [Green Version] - Žnidarič, M. Optimal two-qubit gate for generation of random bipartite entanglement. Phys. Rev. A
**2007**, 76, 012318. [Google Scholar] [CrossRef] [Green Version] - Pozniak, M.; Zyczkowski, K.; Kus, M. Composed ensembles of random unitary matrices. J. Phys. A Math. Gen.
**1998**, 31, 1059. [Google Scholar] [CrossRef] - Pelofske, E.; Bärtschi, A.; Eidenbenz, S. Quantum Volume in Practice: What Users Can Expect From NISQ Devices. IEEE Trans. Quantum Eng.
**2022**, 3, 1–19. [Google Scholar] [CrossRef] - Humphreys, J.E. Introduction to Lie Algebras and Representation Theory; Springer Science & Business Media: Cham, Switzerland, 2012; Volume 9. [Google Scholar]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Giraud, O.; Žnidarič, M.; Georgeot, B. Quantum circuit for three-qubit random states. Phys. Rev. A
**2009**, 80, 042309. [Google Scholar] [CrossRef] [Green Version] - Dahlsten, O.C.O.; Lupo, C.; Mancini, S.; Serafini, A. Entanglement typicality. J. Phys. A Math. Theor.
**2014**, 47, 363001. [Google Scholar] [CrossRef] [Green Version] - Facchi, P.; Florio, G.; Parisi, G.; Pascazio, S. Maximally multipartite entangled states. Phys. Rev. A
**2008**, 77, 060304. [Google Scholar] [CrossRef] [Green Version] - McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys.
**2016**, 18, 023023. [Google Scholar] [CrossRef] - Moll, N.; Barkoutsos, P.; Bishop, L.S.; Chow, J.M.; Cross, A.; Egger, D.J.; Filipp, S.; Fuhrer, A.; Gambetta, J.M.; Ganzhorn, M.; et al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol.
**2018**, 3, 030503. [Google Scholar] [CrossRef] - Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys.
**2021**, 3, 625–644. [Google Scholar] [CrossRef] - Khaneja, N.; Glaser, S.J. Cartan decomposition of SU (2n) and control of spin systems. Chem. Phys.
**2001**, 267, 11–23. [Google Scholar] [CrossRef] - Khaneja, N.; Brockett, R.; Glaser, S.J. Time optimal control in spin systems. Phys. Rev. A
**2001**, 63, 032308. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The pseudo-random state generator circuit consists of m layers of random permutations of the qubit labels, followed by random two-qubit gates. When the circuit width n is odd, one of the qubits is idle in each layer. In this figure, a circuit with $n=6$ qubits width is shown for illustration purposes.

**Figure 2.**A circuit for two-qubit random state generation. Rotations ${R}_{k}$ are obtained by exponentiating the corresponding Pauli matrices ${\sigma}_{k}$.

**Figure 3.**The pseudo-random state generator circuit consists of m layers of random permutations of the qubit labels, followed by random D gates. In this figure, a circuit with $n=6$ qubit’s width is shown for illustrative purposes.

**Figure 4.**Average mean value relative error (

**left**) and average variance relative error (

**right**) for purities as a function of the number of steps (i.e., layers in the quantum circuit) and the ensemble size for 4-qubit (

**top**), 6-qubit (

**middle**), and 8-qubit (

**bottom**) pseudo-random quantum state. The solid lines represent the direct method while the dashed lines represent the KAK method.

**Figure 5.**Purity mean value (

**top**) and variance (

**bottom**) of a pseudo-random quantum state plotted as a function of partition size. The various colors represent systems of different dimensions (number of qubits). The black dots are the expected values for a true random state. Here is shown the direct method with 20 steps and ${N}_{e}=100$.

**Figure 6.**Architectures of the quantum processors used in this work. The circles represent the qubits while the lines represent the physical connection between them. On the left, we have the architecture of IonQ’s $Harmony$, which clearly shows the complete connectivity of ion-based devices. On the right, we have $ibm\_lagos$. Here, the color scheme (blue for min, violet for max) refers to the single-qubit (color of the circles) and two-qubit (color of the lines) error rates. These are purely indicative since the rates change upon every calibration of the device.

**Figure 7.**Comparison between the purities of a 4- and 6-qubit pseudo-random quantum states, generated in the two different realizations of a quantum computer investigated, with the direct method. In green, the superconductor IBM’s ibm_lagos is shown, while IonQ’s Harmony is shown in blue. Red curves give the results for ideal random states. Data were obtained on 10 September 2022, for ibm_lagos and on 24 July 2022, for Harmony.

**Figure 8.**Evolution of the entanglement content of a pseudo-random quantum state generated by the circuit described in Figure 3 as a function of the number of layers (steps). The panels on the right show the individual curves, with the horizontal solid lines highlighting the purity expectation values for a true random state. The horizontal dashed lines refer to the purity of a maximally mixed state. Data taken from $ibm\_lagos$ on 29 January 2023.

**Table 1.**Table of quantum processing units (QPUs) evaluated in [30] using the quantum volume (QV) protocol. Values of QV, as well as single-qubit (1Q) gate, two-qubit (2Q) gate and state preparation and measurement (SPAM) fidelities are all vendor-provided metrics. The mean gate and SPAM fidelities are computed in [30] across all operations of the same type available on the device during the whole QV circuit execution duration. The number of edges for each backend was simply counted as the number of connections between qubits.

QPU | Fidelity | |||||||
---|---|---|---|---|---|---|---|---|

Vendor | Backend | QV | # Qubit | Topology | # Edges | 2Q Gate | 1Q Gate | SPAM |

IBM Q | $ibm\_lagos$ | 32 | 7 | Falcon r5.11H | 6 | 0.9924 | 0.9998 | 0.9862 |

IonQ | $Harmony$ | 8 * | 11 | All-to-All | 55 | 0.96541 | 0.9972 | 0.99709 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cenedese, G.; Bondani, M.; Rosa, D.; Benenti, G.
Generation of Pseudo-Random Quantum States on Actual Quantum Processors. *Entropy* **2023**, *25*, 607.
https://doi.org/10.3390/e25040607

**AMA Style**

Cenedese G, Bondani M, Rosa D, Benenti G.
Generation of Pseudo-Random Quantum States on Actual Quantum Processors. *Entropy*. 2023; 25(4):607.
https://doi.org/10.3390/e25040607

**Chicago/Turabian Style**

Cenedese, Gabriele, Maria Bondani, Dario Rosa, and Giuliano Benenti.
2023. "Generation of Pseudo-Random Quantum States on Actual Quantum Processors" *Entropy* 25, no. 4: 607.
https://doi.org/10.3390/e25040607