Considerations on the Relativity of Quantum Irrealism
Abstract
1. Introduction
2. Methods
2.1. Quantum Irrealism
2.2. Lorentz Boosts and Wigner Rotations
3. Results
3.1. MZI from a Boosted Frame
3.2. Boost Effects on Spin Irreality
3.3. Boost Effects on Momentum Irreality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Bohr, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 48, 696–702. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef]
- Hensen, B.; Kalb, N.; Blok, M.S.; Dréau, A.E.; Reiserer, A.; Vermeulen, R.F.; Schouten, R.N.; Markham, M.; Twitchen, D.J.; Goodenough, K.; et al. Loophole-free Bell test using electron spins in diamond: Second experiment and additional analysis. Sci. Rep. 2016, 6, 30289. [Google Scholar] [CrossRef]
- Rauch, D.; Handsteiner, J.; Hochrainer, A.; Gallicchio, J.; Friedman, A.S.; Leung, C.; Liu, B.; Bulla, L.; Ecker, S.; Steinlechner, F.; et al. Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 2018, 121, 080403. [Google Scholar] [CrossRef]
- Li, M.H.; Wu, C.; Zhang, Y.; Liu, W.Z.; Bai, B.; Liu, Y.; Zhang, W.; Zhao, Q.; Li, H.; Wang, Z.; et al. Test of Local Realism into the Past without Detection and Locality Loopholes. Phys. Rev. Lett. 2018, 121, 080404. [Google Scholar] [CrossRef] [PubMed]
- Bilobran, A.L.O.; Angelo, R.M. A measure of physical reality. Europhys. Lett. 2015, 112, 40005. [Google Scholar] [CrossRef]
- Dieguez, P.R.; Guimarães, J.R.; Peterson, J.P.S.; Angelo, R.M.; Serra, R.M. Experimental assessment of physical realism in a quantum-controlled device. Commun. Phys. 2022, 5, 82. [Google Scholar] [CrossRef]
- Wigner, E.P. Remarks on the Mind-Body Question. In The Scientist Speculates; Good, I.J., Ed.; Heineman: London, UK, 1961. [Google Scholar]
- Frauchiger, D.; Renner, R. Quantum theory cannot consistently describe the use of itself. Nat. Commun. 2018, 9, 3711. [Google Scholar] [CrossRef]
- Brukner, C. A No-Go Theorem for Observer-Independent Facts. Entropy 2018, 20, 350. [Google Scholar] [CrossRef]
- Bong, K.W.; Utreras-Alarcón, A.; Ghafari, F.; Liang, Y.C.; Tischler, N.; Cavalcanti, E.G.; Pryde, G.J.; Wiseman, H.M. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 2020, 16, 1199–1205. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein–Podolsky-Rosen Channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef]
- Martín-Martínez, E.; Menicucci, N.C. Cosmological quantum entanglement. Class. Quantum Grav. 2012, 29, 224003. [Google Scholar] [CrossRef]
- Marais, A.; Adams, B.; Ringsmuth, A.K.; Ferretti, M.; Gruber, J.M.; Hendrikx, R.; Schuld, M.; Smith, S.L.; Sinayskiy, I.; Krüger, T.P.J.; et al. The future of quantum biology. J. R. Soc. Interface 2018, 15, 20180640. [Google Scholar] [CrossRef] [PubMed]
- Peres, A.; Terno, D.R. Quantum information and relativity theory. Rev. Mod. Phys. 2004, 76, 93–123. [Google Scholar] [CrossRef]
- Peres, A.; Scudo, P.F.; Terno, D.R. Quantum Entropy and Special Relativity. Phys. Rev. Lett. 2002, 88, 230402. [Google Scholar] [CrossRef]
- Alsing, P.M.; Milburn, G. Lorentz Invariance of Entanglement. Quantum Inf. Comput. 2002, 2, 487–512. [Google Scholar] [CrossRef]
- Czachor, M. Comment on “Quantum Entropy and Special Relativity”. Phys. Rev. Lett. 2005, 94, 078901. [Google Scholar] [CrossRef]
- Dunningham, J.; Palge, V.; Vedral, V. Entanglement and nonlocality of a single relativistic particle. Phys. Rev. A 2009, 80, 044302. [Google Scholar] [CrossRef]
- Saldanha, P.L.; Vedral, V. Physical interpretation of the Wigner rotations and its implications for relativistic quantum information. New J. Phys. 2012, 14, 023041. [Google Scholar] [CrossRef]
- Saldanha, P.L.; Vedral, V. Wigner rotations and an apparent paradox in relativistic quantum information. Phys. Rev. A 2013, 87, 042102. [Google Scholar] [CrossRef]
- Taillebois, E.R.F.; Avelar, A.T. Spin-reduced density matrices for relativistic particles. Phys. Rev. A 2013, 88, 060302. [Google Scholar] [CrossRef]
- Zambianco, M.H.; Landulfo, A.G.S.; Matsas, G.E.A. Observer dependence of entanglement in nonrelativistic quantum mechanics. Phys. Rev. A 2019, 100, 062126. [Google Scholar] [CrossRef]
- Bittencourt, V.A.S.V.; Blasone, M. Single particle entanglement of a massive relativistic particle: Dirac bispinors and spin 1/2 states. J. Phys. Conf. Ser. 2020, 1612, 012003. [Google Scholar] [CrossRef]
- Bernardini, A.E.; Bittencourt, V.A.S.V.; Blasone, M. Lorentz invariant quantum concurrence for SU(2) ⊗ SU(2) spin–parity states. Eur. Phys. J. Plus 2020, 135, 320. [Google Scholar] [CrossRef]
- Gingrich, R.M.; Adami, C. Quantum Entanglement of Moving Bodies. Phys. Rev. Lett. 2002, 89, 270402. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.F.; Shaji, A.; Sudarshan, E.C.G. Lorentz transformations that entangle spins and entangle momenta. Phys. Rev. A 2007, 75, 022101. [Google Scholar] [CrossRef]
- Chakrabarti, A. Entangled states, Lorentz transformations and spin precession in magnetic fields. J. Phys. A Math. Theor. 2009, 42, 245205. [Google Scholar] [CrossRef]
- Friis, N.; Bertlmann, R.A.; Huber, M.; Hiesmayr, B.C. Relativistic entanglement of two massive particles. Phys. Rev. A 2010, 81, 042114. [Google Scholar] [CrossRef]
- Choi, T.; Hur, J.; Kim, J. Relativistic effects on the spin entanglement of two massive Dirac particles. Phys. Rev. A 2011, 84, 012334. [Google Scholar] [CrossRef]
- Palge, V.; Dunningham, J. Behavior of Werner states under relativistic boosts. Ann. Phys. 2015, 363, 275–304. [Google Scholar] [CrossRef]
- Palge, V.; Dunningham, J.; Groote, S.; Liivat, H. Relativistic entanglement of two particles driven by continuous product momenta. Phys. Rev. A 2018, 98, 052322. [Google Scholar] [CrossRef]
- Bittencourt, V.A.S.V.; Bernardini, A.E.; Blasone, M. Global Dirac bispinor entanglement under Lorentz boosts. Phys. Rev. A 2018, 97, 032106. [Google Scholar] [CrossRef]
- Fan, J.; Li, X. Relativistic effect of entanglement in fermion-fermion scattering. Phys. Rev. D 2018, 97, 016011. [Google Scholar] [CrossRef]
- Petreca, A.T.; Cardoso, G.; Devecchi, F.P.; Angelo, R.M. Genuine multipartite entanglement and quantum coherence in an electron-positron system: Relativistic covariance. Phys. Rev. A 2022, 105, 032205. [Google Scholar] [CrossRef]
- Czachor, M. Einstein–Podolsky-Rosen-Bohm experiment with relativistic massive particles. Phys. Rev. A 1997, 55, 72–77. [Google Scholar] [CrossRef]
- Lee, D.; Chang-Young, E. Quantum entanglement under Lorentz boost. New J. Phys. 2004, 6, 67. [Google Scholar] [CrossRef]
- Caban, P.; Rembieliński, J. Lorentz-covariant reduced spin density matrix and Einstein–Podolsky-Rosen–Bohm correlations. Phys. Rev. A 2005, 72, 012103. [Google Scholar] [CrossRef]
- Kim, W.T.; Son, E.J. Lorentz-invariant Bell’s inequality. Phys. Rev. A 2005, 71, 014102. [Google Scholar] [CrossRef]
- Streiter, L.F.; Giacomini, F.; Brukner, C. Relativistic Bell Test within Quantum Reference Frames. Phys. Rev. Lett. 2021, 126, 230403. [Google Scholar] [CrossRef]
- Bauke, H.; Ahrens, S.; Keitel, C.H.; Grobe, R. Relativistic spin operators in various electromagnetic environments. Phys. Rev. A 2014, 89, 052101. [Google Scholar] [CrossRef]
- Bauke, H.; Ahrens, S.; Keitel, C.H.; Grobe, R. What is the relativistic spin operator? New J. Phys. 2014, 16, 043012. [Google Scholar] [CrossRef]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, C. Relativistic Quantum Reference Frames: The Operational Meaning of Spin. Phys. Rev. Lett. 2019, 123, 090404. [Google Scholar] [CrossRef] [PubMed]
- Gonera, C.; Kosiński, P.; Maślanka, P. Special relativity and reduced spin density matrices. Phys. Rev. A 2004, 70, 034102. [Google Scholar] [CrossRef]
- Thomas, L.H. The Motion of the Spinning Electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Wigner, E. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math. 1939, 40, 149–204. [Google Scholar] [CrossRef]
- O’Donnell, K.; Visser, M. Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession. Eur. J. Phys. 2011, 32, 1033–1047. [Google Scholar] [CrossRef]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, C. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun. 2019, 10, 494. [Google Scholar] [CrossRef]
- Savi, M.F.; Angelo, R.M. Quantum resource covariance. Phys. Rev. A 2021, 103, 022220. [Google Scholar] [CrossRef]
- Gomes, V.S.; Angelo, R.M. Nonanomalous measure of realism-based nonlocality. Phys. Rev. A 2018, 97, 012123. [Google Scholar] [CrossRef]
- Fucci, D.M.; Angelo, R.M. Tripartite realism-based quantum nonlocality. Phys. Rev. A 2019, 100, 062101. [Google Scholar] [CrossRef]
- Orthey, A.C.; Angelo, R.M. Nonlocality, quantum correlations, and violations of classical realism in the dynamics of two noninteracting quantum walkers. Phys. Rev. A 2019, 100, 042110. [Google Scholar] [CrossRef]
- Dieguez, P.R.; Angelo, R.M. Information-reality complementarity: The role of measurements and quantum reference frames. Phys. Rev. A 2018, 97, 022107. [Google Scholar] [CrossRef]
- Engelbert, N.G.; Angelo, R.M. Hardy’s paradox as a demonstration of quantum irrealism. Found. Phys. 2020, 50, 105–119. [Google Scholar] [CrossRef]
- Freire, I.S.; Angelo, R.M. Quantifying continuous-variable realism. Phys. Rev. A 2019, 100, 022105. [Google Scholar] [CrossRef]
- Orthey, A.C.; Angelo, R.M. Quantum realism: Axiomatization and quantification. Phys. Rev. A 2022, 105, 052218. [Google Scholar] [CrossRef]
- Costa, A.C.S.; Angelo, R.M. Information-based approach towards a unified resource theory. Quantum Inf. Process. 2020, 19, 325. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Pereira, S.T.; Angelo, R.M. Galilei covariance and Einstein’s equivalence principle in quantum reference frames. Phys. Rev. A 2015, 91, 022107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelbert, N.G.; Angelo, R.M. Considerations on the Relativity of Quantum Irrealism. Entropy 2023, 25, 603. https://doi.org/10.3390/e25040603
Engelbert NG, Angelo RM. Considerations on the Relativity of Quantum Irrealism. Entropy. 2023; 25(4):603. https://doi.org/10.3390/e25040603
Chicago/Turabian StyleEngelbert, Nicholas G., and Renato M. Angelo. 2023. "Considerations on the Relativity of Quantum Irrealism" Entropy 25, no. 4: 603. https://doi.org/10.3390/e25040603
APA StyleEngelbert, N. G., & Angelo, R. M. (2023). Considerations on the Relativity of Quantum Irrealism. Entropy, 25(4), 603. https://doi.org/10.3390/e25040603