Predicting NOx Distribution in a Micro Rich–Quench–Lean Combustor Using a Variational Autoencoder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Combustor
2.2. Simulation Methods and Validation
2.3. Artificial Neural Networks and Variational Auto-Encoders
2.4. Dataset
2.5. Architectural Details
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a1 | model constant | μ | laminar viscosity [kg/(m·s)] |
c | standard gas concentration | μe | effective viscosity [kg/(m·s)] |
c′ | test gas concentration | μt | turbulent viscosity [kg/(m·s)] |
F1/F2 | blending function | ρ | density [kg/m3] |
k | turbulent kinetic energy [J] | σh/σk/σY/σω | model constants |
Sm/Su/Sv/Sw/Sh/SY | source terms | Ω | vorticity [1/s] |
t | time [s] | ω | dissipation rate [1/s] |
u | velocity in x direction [m/s] | Abbreviations | |
v | velocity in y direction [m/s] | AE | auto encoder |
V | standard gas fraction | ANN | artificial neural network |
V’ | test gas fraction | CBM | coal bed methane |
w | velocity in z direction [m/s] | FGM | flamelet-generated manifold |
Greek Symbols | MSE | mean squared error | |
β/β* | model constants | probability density function | |
κ | model constant | VAE | variational auto-encoder |
References
- Balli, O.; Caliskan, H. Various thermoeconomic assessments of a heat and power system with a micro gas turbine engine used for industry. Energy Convers. Manag. 2022, 252, 114984. [Google Scholar] [CrossRef]
- Mollo, M.; Kolesnikov, A.; Makgato, S. Simultaneous reduction of NOx emission and SOx emission aided by improved efficiency of a Once-Through Benson Type Coal Boiler. Energy 2022, 248, 123551. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ng, C.H.; Taufiq-Yap, Y.H.; Choong, S.Y.T.; Awual, M.R. Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Prog. Mater. Sci. 2023, 132, 101033. [Google Scholar] [CrossRef]
- Ávila, C.D.; Cardona, S.; Abdullah, M.; Younes, M.; Jamal, A.; Guiberti, T.F.; Roberts, W.L. Experimental assessment of the performance of a commercial micro gas turbine fueled by ammonia-methane blends. Prog. Energy Combust. Sci. 2023, 13, 100104. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Sun, X.X.; Sethi, V.; Nalianda, D.; Li, Y.G.; Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci. 2017, 94, 12–45. [Google Scholar] [CrossRef] [Green Version]
- Nam, L.; Yoh, J.J. Large eddy simulation of combustion instabilities in multiple combustors densely interacting with each other. Appl. Therm. Eng. 2023, 220, 119714. [Google Scholar] [CrossRef]
- Assareh, E.; Birgani, K.; Keykhah, S.; Ershadi, A.; Lee, M. An integrated system for producing electricity and fresh water from a new gas-fired power plant and a concentrated solar power plant—Case study—(Australia, Spain, South Korea, Iran). Renew. Energy 2023, 44, 19–39. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Chow, T.T.; Fong, K.F.; Lee, C.K. Comparative study on humidified gas turbine cycles with different air saturator designs. Appl. Energy 2019, 254, 113592. [Google Scholar] [CrossRef]
- Speight, J.G. Natural Gas; Gulf Publishing Company: New York, NY, USA, 2008; pp. 131–160. [Google Scholar]
- Fortunato, V.; Mosca, G.; Lupant, D.; Parente, A. Validation of a reduced NO formation mechanism on a flameless furnace fed with H2-enriched low calorific value fuels. Appl. Therm. Eng. 2018, 144, 877–889. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, X.S.; Wang, Y.; Zhang, J.B. Study on flame characteristics of low heat value gas. Energy Convers. Manag. 2019, 196, 344–353. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Yao, M.; Ren, Z.Y. Analysis of operating limits and combustion state regulation for low-calorific value gases in industrial burners. Int. J. Hydrogen Energy 2022, 47, 1306–1318. [Google Scholar] [CrossRef]
- Rudolph, C.; Freund, D.; Kaczmarek, D.; Atakan, B. Low-calorific ammonia containing off-gas mixture: Modelling the conversion in HCCI engines. Combust. Flame 2022, 243, 112063. [Google Scholar] [CrossRef]
- Du, Y.B.; Xing, M.; Zhang, J.K.; Zhang, J.P.; Deng, L.; Che, D.F. Combustion characteristic of low calorific gas under pilot ignition condition—Exploring the influence of pilot flame products. Fuel 2023, 333, 126613. [Google Scholar] [CrossRef]
- Mosier, S.A.; Pierce, R.M. Advanced Combustor Systems for Stationary Gas Tubine Engines; US Environmental Protection Agency: Washington, DC, USA, 1980. [Google Scholar]
- Božo, M.G.; Mashruk, S.; Zitouni, S.; Valera-Medina, A. Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle. Energy Convers. Manag. 2021, 221, 113625. [Google Scholar] [CrossRef]
- Christo, F.C.; Levy, Y.; Costa, M.; Balelang, G.A.F. Effect of jet momentum flux and heat density on NO emission in a flameless gas turbine combustor. Aerosp. Sci. Technol. 2021, 119, 107137. [Google Scholar] [CrossRef]
- Choi, J.; Ahn, M.; Kwak, S.; Lee, J.G.; Yoon, Y. Flame structure and NOx emission characteristics in a single hydrogen combustor. Int. J. Hydrogen Energy 2022, 47, 29542–29553. [Google Scholar] [CrossRef]
- Okafor, E.C.; Kurata, O.; Yamashita, H.; Inoue, T.; Tsujimura, T.; Iki, N.; Hayakawa, A.; Ito, S.; Uchida, M.; Kobayashi, H. Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. Appl. Energy Combust. Sci. 2021, 7, 100038. [Google Scholar] [CrossRef]
- Li, J.Z.; Chen, J.; Jin, W.; Yuan, L.; Hu, G. The design and performance of a RP-3 fueled high temperature rise combustor based on RQL staged combustion. Energy 2020, 209, 118480. [Google Scholar] [CrossRef]
- Rodrigues, N.S.; Busari, O.; Senior WC, B.; McDonald, C.T.; Chen, Y.T.; North, A.J.; Laster, W.R.; Meyer, S.E.; Lucht, R.P. NOx reduction in an axially staged gas turbine model combustor through increase in the combustor exit Mach number. Combust. Flame 2020, 212, 272–294. [Google Scholar] [CrossRef]
- Fu, Z.G.; Gao, H.H.; Zeng, Z.X.; Liu, J.; Zhu, Q.Z. Generation characteristics of thermal NOx in a double-swirler annular combustor under various inlet conditions. Energy 2020, 200, 117487. [Google Scholar] [CrossRef]
- Liu, Z.G.; Xiong, Y.; Zhu, Z.R.; Zhang, Z.D.; Liu, Y. Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor. Int. J. Hydrogen. Energy 2022, 47, 16309–16320. [Google Scholar] [CrossRef]
- Cho, C.H.; Baek, G.M.; Sohn, C.H.; Cho, J.H.; Kim, H.S. A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor. Appl. Therm. Eng. 2013, 59, 454–463. [Google Scholar] [CrossRef]
- Meisl, J.; Koch, R.; Kneer, R.; Wittig, S. Study of NOx emission characteristics in pressurized staged combustor concepts. Symp. Int. Combust. 1994, 1, 1043–1049. [Google Scholar] [CrossRef]
- Holdeman, J.D.; Vardakas, M.A.; Chang, C.T. Mixing of multiple jets with a confined subsonic crossflow, part iii:the effects of air preheat and number of orifices on flow and emissions in an RQL mixing section. J. Fluids Eng. 2008, 129, 1460–1467. [Google Scholar] [CrossRef]
- Göke, S.; Füri, M.; Bourque, G.; Bobusch, B.; Göckeler, K.; Krüger, O.; Schimek, S.; Terhaar, S.; Paschereit, C.O. Influence of steam dilution on the combustion of natural gas and hydrogen in premixed and rich-quench-lean combustors. Fuel Process. Technol. 2013, 107, 14–22. [Google Scholar] [CrossRef]
- Laranci, P.; Zampilli, M.; D’Amico, M.; Bartocci, P.; Bidini, G.; Fantozzi, F. Geometry optimization of a commercial annular RQL combustor of a micro gas turbine for use with natural gas and vegetal oils. Energy Proc. 2017, 126, 875–882. [Google Scholar] [CrossRef]
- Oechsle, V.; Mongia, H.; Holdeman, J. Comparison of mixing calculations for reacting and non-reacting flows in a cylindrical duct. In Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 1994. [Google Scholar]
- Yan, P.L.; Fan, W.J.; Qi, S.C.; Zhang, R.C.; Liu, J.; Bai, N.J.; Zhao, W.S.; Yang, X.Y. Numerical investigation on the effect of g-load on high-g ultra-compact combustor. Aerosp. Sci. Technol. 2022, 121, 107305. [Google Scholar] [CrossRef]
- Yan, P.L.; Fan, W.J.; Xu, H.Q.; Zhang, R.C. Numerical Study of NOx Generation in a Trapped Vortex Combustor Fuelled by Kerosene Blended with Ethanol. In Proceedings of the 5th International Conference on Energy and Environmental Science, Malaya, Malaysia, 8–10 January 2021. [Google Scholar]
- Corporan, E.; Williams, V.; Stouffer, S.; Hendershott, T.; Monfort, J. High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor. Fuel 2023, 335, 126993. [Google Scholar] [CrossRef]
- An, J.; Wang, H.Y.; Liu, B.; Luo, K.H.; Qin, F.; He, G.Q. A deep learning framework for hydrogen-fueled turbulent combustion simulation. Int. J. Hydrogen Energy 2020, 45, 17992–18000. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Zhang, C.; Han, X.; Lin, Y.Z. Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method. Aerosp. Sci. Technol. 2021, 109, 106443. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Yan, P.L.; Fan, W.J.; Zhang, R.C. Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization. Energy 2023, 273, 127227. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 6088, 533–536. [Google Scholar] [CrossRef]
- Kramer, M.A. Nonlinear principal component analysis using auto-associative neural networks. AIChe J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. [Google Scholar] [CrossRef] [Green Version]
Equation Type | φ | Γφ | Sφ |
---|---|---|---|
Continuity equation | 1 | 0 | Sm |
Momentum equation in the x-direction | u | μe | Su |
Momentum equation in the y-direction | v | μe | Sv |
Momentum equation in the z-direction | w | μe | Sw |
Energy equation | h | μe/σh | Sh |
Component equation | Y | μe/σY | SY |
Parameter | Values | Unit |
---|---|---|
Inlet air temperature | 400, 500, 600, 700, 800 | K |
Inlet air mass flow rate (corresponding lean burn zone equivalence ratio) | 0.08 (0.883), 0.09 (0.783), 0.1 (0.695), 0.11 (0.623), 0.12 (0.566), 0.13 (0.518) | kg/s (None) |
Swirler installation angle | 40 | deg |
Pressure | 1, 2, 3, 4 | bar |
Hyperparameter | Alternative Values | Chosen Value |
---|---|---|
Learning rate | 5 × 10−4, 5 × 10−5, 5 × 10−6 | 5 × 10−4 |
Kernel size | 3, 5, 7 | 7 |
Latent vector dimension | 4, 16, 64 | 64 |
Convolutional channel number | 8, 16, 32 | 32 |
Stride | 2, 3, 5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Fan, W.; Zhang, R. Predicting NOx Distribution in a Micro Rich–Quench–Lean Combustor Using a Variational Autoencoder. Entropy 2023, 25, 604. https://doi.org/10.3390/e25040604
Yan P, Fan W, Zhang R. Predicting NOx Distribution in a Micro Rich–Quench–Lean Combustor Using a Variational Autoencoder. Entropy. 2023; 25(4):604. https://doi.org/10.3390/e25040604
Chicago/Turabian StyleYan, Peiliang, Weijun Fan, and Rongchun Zhang. 2023. "Predicting NOx Distribution in a Micro Rich–Quench–Lean Combustor Using a Variational Autoencoder" Entropy 25, no. 4: 604. https://doi.org/10.3390/e25040604