Synchrony-Division Neural Multiplexing: An Encoding Model
Abstract
:1. Introduction
2. Results
2.1. Different Temporal Filters Map Distinct Features of a Mixed Stimulus
2.2. Low-Dimensional Feature Space of the Neural Response Can Be Characterized by the STAs of Synchronous and Asynchronous Spikes
2.3. Different Nonlinear Functions Are Associated with Synchronous and Asynchronous Spikes
2.4. An Augmented LNL Cascade Model for Synchrony-Division Multiplexing
3. Discussion
3.1. Subspace Feature Extractors: iSTAC vs. STC
3.2. Choice of Static Nonlinearity in the LNL Model
3.3. Generalized Linear Model (GLM) for Augmented LNL
4. Materials and Methods
4.1. Stimulated Mixed Input
4.2. Simulated Neural Ensemble and Its Response to the Mixed Input
4.3. Generalized Linear Model (GLM) Details
4.4. STA and STC Estimators
4.5. iSTAC Estimator
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Li, Y.G.; Winters, J.H.; Sollenberger, N.R. MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Trans. Commun. 2002, 50, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, S.B.; Sejnowski, T.J.J.S. Communication in neuronal networks. Science 2003, 301, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.H. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J. Acoust. Soc. Am. 1980, 68, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Harvey, M.A.; Saal, H.P.; Dammann, J.F., III; Bensmaia, S.J. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol. 2013, 11, e1001558. [Google Scholar] [CrossRef] [Green Version]
- Lankarany, M.; Al-Basha, D.; Ratté, S.; Prescott, S.A. Differentially synchronized spiking enables multiplexed neural coding. Proc. Natl. Acad. Sci. USA 2019, 116, 10097–10102. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, W.; Konishi, M. Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci. 1984, 4, 1787–1799. [Google Scholar] [CrossRef] [Green Version]
- Saal, H.P.; Harvey, M.A.; Bensmaia, S.J. Rate and timing of cortical responses driven by separate sensory channels. eLife 2015, 4, e10450. [Google Scholar] [CrossRef]
- Saal, H.P.; Bensmaia, S.J. Touch is a team effort: Interplay of submodalities in cutaneous sensibility. Trends Neurosci. 2014, 37, 689–697. [Google Scholar] [CrossRef]
- Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Netw. Comput. Neural Syst. 2004, 15, 243–262. [Google Scholar] [CrossRef]
- Latimer, K.W.; Barbera, D.; Sokoletsky, M.; Awwad, B.; Katz, Y.; Nelken, I.; Lampl, I.; Fairhall, A.L.; Priebe, N.J. Multiple timescales account for adaptive responses across sensory cortices. J. Neurosci. 2019, 39, 10019–10033. [Google Scholar] [CrossRef]
- Churchland, M.M.; Byron, M.Y.; Sahani, M.; Shenoy, K.V. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 2007, 17, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paninski, L.; Pillow, J.; Lewi, J. Statistical models for neural encoding, decoding, and optimal stimulus design. Prog. Brain Res. 2007, 165, 493–507. [Google Scholar]
- Rezaei, M.R.; Popovic, M.R.; Lankarany, M. A Time-Varying Information Measure for Tracking Dynamics of Neural Codes in a Neural Ensemble. Entropy 2020, 22, 880. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.A.; Ratté, S.; De Koninck, Y.; Sejnowski, T.J. Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J. Neurophysiol. 2008, 100, 3030–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paninski, L. Convergence properties of three spike-triggered analysis techniques. Netw. Comput. Neural Syst. 2003, 14, 437–464. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, O.; Pillow, J.W.; Rust, N.C.; Simoncelli, E.P. Spike-triggered neural characterization. J. Vis. 2006, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Pillow, J.W.; Simoncelli, E.P. Dimensionality reduction in neural models: An information-theoretic generalization of spike-triggered average and covariance analysis. J. Vis. 2006, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Lankarany, M.; Prescott, S.A. Multiplexed coding through synchronous and asynchronous spiking. BMC Neurosci. 2015, 16, P198. [Google Scholar] [CrossRef] [Green Version]
- Bojak, I.; Nowotny, T. 27th Annual Computational Neuroscience Meeting (CNS* 2018): Part Two. BMC Neurosci. 2018, 19, 65. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Pillow, J.W.; Paninski, L.; Uzzell, V.J.; Simoncelli, E.P.; Chichilnisky, E. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neurosci. 2005, 25, 11003–11013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillow, J.W.; Shlens, J.; Paninski, L.; Sher, A.; Litke, A.M.; Chichilnisky, E.; Simoncelli, E.P. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 2008, 454, 995–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef] [Green Version]
- Sharpee, T.; Rust, N.C.; Bialek, W. Analyzing neural responses to natural signals: Maximally informative dimensions. Neural Comput. 2004, 16, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Moskovitz, T.H.; Roy, N.A.; Pillow, J.W. A comparison of deep learning and linear-nonlinear cascade approaches to neural encoding. BioRxiv 2018, 463422. [Google Scholar] [CrossRef]
- Rezaei, M.R.; Gillespie, A.K.; Guidera, J.A.; Nazari, B.; Sadri, S.; Frank, L.M.; Eden, U.T.; Yousefi, A. A Comparison Study of Point-Process Filter and Deep Learning Performance in Estimating Rat Position Using an Ensemble of Place Cells. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4732–4735. [Google Scholar]
- Morris, C.; Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Ratté, S.; Hong, S.; De Schutter, E.; Prescott, S.A. Impact of neuronal properties on network coding: Roles of spike initiation dynamics and robust synchrony transfer. Neuron 2013, 78, 758–772. [Google Scholar] [CrossRef] [Green Version]
- Pirschel, F.; Kretzberg, J. Multiplexed population coding of stimulus properties by leech mechanosensory cells. J. Neurosci. 2016, 36, 3636–3647. [Google Scholar] [CrossRef] [Green Version]
- Destexhe, A.; Rudolph, M.; Paré, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 2003, 4, 739–751. [Google Scholar] [CrossRef]
- Prescott, S.A.; De Koninck, Y.; Sejnowski, T.J. Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 2008, 4, e1000198. [Google Scholar] [CrossRef] [Green Version]
(MAE) | ||||||
---|---|---|---|---|---|---|
Sync | Async | Mixed | Sync | Async | Mixed | |
Poisson GLM | 0.245 | 0.223 | 0.228 | 0.338 | 0.313 | 0.326 |
Augmented LNL () | 0.101 | 0.104 | 0.102 | 0.137 | 0.134 | 0.135 |
Augmented LNL () | 0.103 | 0.107 | 0.106 | 0.140 | 0.151 | 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei, M.R.; Saadati Fard, R.; Popovic, M.R.; Prescott, S.A.; Lankarany, M. Synchrony-Division Neural Multiplexing: An Encoding Model. Entropy 2023, 25, 589. https://doi.org/10.3390/e25040589
Rezaei MR, Saadati Fard R, Popovic MR, Prescott SA, Lankarany M. Synchrony-Division Neural Multiplexing: An Encoding Model. Entropy. 2023; 25(4):589. https://doi.org/10.3390/e25040589
Chicago/Turabian StyleRezaei, Mohammad R., Reza Saadati Fard, Milos R. Popovic, Steven A. Prescott, and Milad Lankarany. 2023. "Synchrony-Division Neural Multiplexing: An Encoding Model" Entropy 25, no. 4: 589. https://doi.org/10.3390/e25040589
APA StyleRezaei, M. R., Saadati Fard, R., Popovic, M. R., Prescott, S. A., & Lankarany, M. (2023). Synchrony-Division Neural Multiplexing: An Encoding Model. Entropy, 25(4), 589. https://doi.org/10.3390/e25040589