Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition
Abstract
:1. Introduction
- We propose the Dual-ATME framework, which extracts HARS- and AARS-based features to perform MER. By adding a parallel artificially-selected ROI ME feature learning module to a standalone deep attention mechanism, we enable the proposed Dual-ATME to effectively learn more discriminative ME features. In particular, based on experimental results, we find that manual feature extraction, based on prior knowledge, is essential for MER with limited data size.
- We design a simple and effective joint loss to optimize feature discrimination in our proposed framework. In particular, in addition to the traditional loss for ME classification, we use a similarity comparison loss to close the distance of the dual-scale ME features in the embedding space.
- Our Dual-ATME method is extensively evaluated on multiple ME datasets. The experimental results showed that our method demonstrates superior, or comparable, MER performance to state-of-the-art (SOTA) methods on the composite dataset benchmark and single dataset evaluation.
2. Related Work
2.1. Micro-Expression Recognition
2.1.1. Hand-Crafted Methods
2.1.2. Deep Learning Methods
2.2. Attention Mechanism in Computer Vision
3. Proposed Method
3.1. Framework Overview
3.2. Data Preprocessing
3.2.1. Face Cropping
3.2.2. Hand-Crafted Attention Region Selection (HARS)
3.2.3. Optical Flow Extraction
3.3. Dual-ATME Module
3.3.1. Backbone: Dual-Branch Inception Feature Extraction Module
- enters the upper branch, where the bi-Inception network automatically extracts discriminative facial features with the help of the AARS module (See Section 3.3.2).
- enters the lower branch. As mentioned before, the puzzled counterparts are manually obtained with good discriminability through HARS. Moreover, experiments also demonstrated that adding an attention block to this branch did not significantly improve performance (See Table 1). Thus, we did not implement an Attention block in the lower branch to reduce the model parameters.
3.3.2. Automated Attention Region Selection (AARS)
- CAM. As shown in the left of Figure 5, we first extracted the spatial context information from by passing through the max-pooling and the average-pooling layers. Then, the features were fed into a weight-shared MLP with two hidden layers. Finally, the two features output from the MLP were summed element-wise and the result activated by sigmoid to obtain the channel attention features . The channel attention weight function can be represented as:
- SAM. Subsequently, as shown in the right of Figure 5, the input feature for SAM was . Then, we applied max-pooling and average-pooling to along the channel dimension. Next, we concatenated the generated feature maps along the channel dimension and applied convolutional and sigmoid operations to obtain the final spatial attention feature map . The spatial attention weight function can be represented as:
3.3.3. ME Feature Similarity Estimation
3.4. Feature Fusion for ME Classification
3.5. Joint Loss Function
4. Experiments
4.1. Datasets and Validation Protocols
4.1.1. Datasets
4.1.2. Validation Protocols
4.2. Experimental Setting
4.3. Experimental Results
4.4. Ablation Study
4.4.1. Effectiveness of the Proposed Modules
4.4.2. Different Combinations of Face Regions
4.4.3. Different Values of Weight Coefficient
4.4.4. Different Loss Functions and Optimizers
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ekman, P. Telling Lies: Clues to Deceit in the Marketplace, Politics and Marriage, revised ed.; WW Norton & Company: New York, NY, USA, 2009. [Google Scholar]
- Frank, M.; Herbasz, M.; Sinuk, K.; Keller, A.; Nolan, C. I see how you feel: Training laypeople and professionals to recognize fleeting emotions. In Proceedings of the Annual Meeting of the International Communication Association, New York, NY, USA; 2009; pp. 1–35. Available online: http://www.allacademic.com/meta/p15018index.html (accessed on 27 February 2023).
- O’Sullivan, M.; Frank, M.G.; Hurley, C.M.; Tiwana, J. Police lie detection accuracy: The effect of lie scenario. Law Hum. Behav. 2009, 33, 530. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Li, X. Automatic micro-expression analysis: Open challenges. Front. Psychol. 2019, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pfister, T.; Huang, X.; Zhao, G.; Pietikäinen, M. A spontaneous micro-expression database: Inducement, collection and baseline. In Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Shanghai, China, 22–26 April 2013; pp. 1–6. [Google Scholar]
- Yan, W.J.; Li, X.; Wang, S.J.; Zhao, G.; Liu, Y.J.; Chen, Y.H.; Fu, X. CASME II: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 2014, 9, e86041. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.K.; Lansley, C.; Costen, N.; Tan, K.; Yap, M.H. SAMM: A Spontaneous Micro-Facial Movement Dataset. IEEE Trans. Affect. Comput. 2018, 9, 116–129. [Google Scholar] [CrossRef]
- Qu, F.; Wang, S.J.; Yan, W.J.; Li, H.; Wu, S.; Fu, X. CAS(ME)2: A database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Trans. Affect. Comput. 2017, 9, 424–436. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Lu, S.; Wang, S.J.; Yan, W.J.; Ma, Y.; Liu, Y.; Huang, C.; Fu, X. CAS(ME)3: A Third Generation Facial Spontaneous Micro-Expression Database with Depth Information and High Ecological Validity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2782–2800. [Google Scholar] [CrossRef] [PubMed]
- See, J.; Yap, M.H.; Li, J.; Hong, X.; Wang, S.J. Megc 2019–the second facial micro-expressions grand challenge. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019. [Google Scholar]
- Ben, X.; Ren, Y.; Zhang, J.; Wang, S.J.; Kpalma, K.; Meng, W.; Liu, Y.J. Video-based facial micro-expression analysis: A survey of datasets, features and algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5826–5846. [Google Scholar] [CrossRef]
- Li, X.; Cheng, S.; Li, Y.; Behzad, M.; Shen, J.; Zafeiriou, S.; Pantic, M.; Zhao, G. 4DME: A Spontaneous 4D Micro-Expression Dataset With Multimodalities. IEEE Trans. Affect. Comput. 2022, 1–18. [Google Scholar] [CrossRef]
- Zhao, G.; Pietikainen, M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 915–928. [Google Scholar] [CrossRef]
- Liong, S.T.; See, J.; Phan, R.C.W.; Wong, K.; Tan, S.W. Hybrid facial regions extraction for micro-expression recognition system. J. Signal Process. Syst. 2018, 90, 601–617. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, G.; Hong, X.; Zheng, W.; Pietikäinen, M. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns. Neurocomputing 2016, 175, 564–578. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.J.; Liu, X.; Zhao, G.; Feng, X.; Pietikäinen, M. Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition. IEEE Trans. Affect. Comput. 2017, 10, 32–47. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, J.K.; Yan, W.J.; Wang, S.J.; Zhao, G.; Fu, X. A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Trans. Affect. Comput. 2015, 7, 299–310. [Google Scholar] [CrossRef]
- Liong, S.T.; See, J.; Wong, K.; Phan, R.C.W. Less is more: Micro-expression recognition from video using apex frame. Signal Process. Image Commun. 2018, 62, 82–92. [Google Scholar] [CrossRef]
- Liong, S.T.; Gan, Y.S.; See, J.; Khor, H.Q.; Huang, Y.C. Shallow triple stream three-dimensional cnn (STSTNet) for micro-expression recognition. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019. [Google Scholar]
- Zhou, L.; Mao, Q.; Xue, L. Dual-inception network for cross-database micro-expression recognition. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019. [Google Scholar]
- Li, J.; Wang, Y.; See, J.; Liu, W. Micro-expression recognition based on 3D flow convolutional neural network. Pattern Anal. Appl. 2019, 22, 1331–1339. [Google Scholar] [CrossRef]
- Xia, Z.; Peng, W.; Khor, H.Q.; Feng, X.; Zhao, G. Revealing the invisible with model and data shrinking for composite-database micro-expression recognition. IEEE Trans. Image Process. 2020, 29, 8590–8605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tao, H.; Zhang, Y.; Xu, T.; Zhang, K.; Hao, Z.; Chen, E. A two-stage 3D CNN based learning method for spontaneous micro-expression recognition. Neurocomputing 2021, 448, 276–289. [Google Scholar] [CrossRef]
- Song, B.; Zong, Y.; Li, K.; Zhu, J.; Shi, J.; Zhao, L. Cross-Database Micro-Expression Recognition Based on a Dual-Stream Convolutional Neural Network. IEEE Access 2022, 10, 66227–66237. [Google Scholar] [CrossRef]
- Zhu, J.; Zong, Y.; Chang, H.; Xiao, Y.; Zhao, L. A Sparse-Based Transformer Network With Associated Spatiotemporal Feature for Micro-Expression Recognition. IEEE Signal Process. Lett. 2022, 29, 2073–2077. [Google Scholar] [CrossRef]
- Chaudhry, R.; Ravichandran, A.; Hager, G.; Vidal, R. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1932–1939. [Google Scholar]
- Patel, D.; Hong, X.; Zhao, G. Selective deep features for micro-expression recognition. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2258–2263. [Google Scholar]
- Khor, H.Q.; See, J.; Phan, R.C.W.; Lin, W. Enriched long-term recurrent convolutional network for facial micro-expression recognition. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 667–674. [Google Scholar]
- Gan, Y.S.; Liong, S.T.; Yau, W.C.; Huang, Y.C.; Tan, L.K. OFF-ApexNet on micro-expression recognition system. Signal Process. Image Commun. 2019, 74, 129–139. [Google Scholar] [CrossRef]
- Khor, H.Q.; See, J.; Liong, S.T.; Phan, R.C.; Lin, W. Dual-stream shallow networks for facial micro-expression recognition. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 36–40. [Google Scholar]
- Xia, Z.; Hong, X.; Gao, X.; Feng, X.; Zhao, G. Spatiotemporal recurrent convolutional networks for recognizing spontaneous micro-expressions. IEEE Trans. Multimed. 2019, 22, 626–640. [Google Scholar] [CrossRef]
- Zhou, L.; Mao, Q.; Huang, X.; Zhang, F.; Zhang, Z. Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition. Pattern Recognit. 2022, 122, 108275. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Wang, S.J. Facial Micro-Expression Recognition Based on Deep Local-Holistic Network. Appl. Sci. 2022, 12, 4643. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Wang, L.; Huang, C.; Xu, W.; et al. Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2956–2964. [Google Scholar]
- Sønderby, S.K.; Sønderby, C.K.; Maaløe, L.; Winther, O. Recurrent spatial transformer networks. arXiv 2015, arXiv:1509.05329. [Google Scholar]
- Zhao, S.; Tang, H.; Liu, S.; Zhang, Y.; Wang, H.; Xu, T.; Chen, E.; Guan, C. ME-PLAN: A deep prototypical learning with local attention network for dynamic micro-expression recognition. Neural Netw. 2022, 153, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.; Velazquez, D.; Cucurull, G.; Gonfaus, J.M.; Roca, F.X.; Gonzalez, J. Pay attention to the activations: A modular attention mechanism for fine-grained image recognition. IEEE Trans. Multimed. 2019, 22, 502–514. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3156–3164. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Su, Y.; Zhang, J.; Liu, J.; Zhai, G. Key facial components guided micro-expression recognition based on first & second-order motion. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Li, H.; Sui, M.; Zhu, Z.; Zhao, F. MMNet: Muscle motion-guided network for micro-expression recognition. arXiv 2022, arXiv:2201.05297. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, B.; Zhang, Z.; Liu, N.; Tan, Y.; Liu, X.; Chen, T. Spatiotemporal convolutional neural network with convolutional block attention module for micro-expression recognition. Information 2020, 11, 380. [Google Scholar] [CrossRef]
- Gajjala, V.R.; Reddy, S.P.T.; Mukherjee, S.; Dubey, S.R. MERANet: Facial micro-expression recognition using 3D residual attention network. In Proceedings of the Twelfth Indian Conference on Computer Vision, Graphics and Image Processing, Jodhpur, India, 19–22 December 2021; pp. 1–10. [Google Scholar]
- Wang, Y.; Huang, Y.; Liu, C.; Gu, X.; Yang, D.; Wang, S.; Zhang, B. Micro expression recognition via dual-stream spatiotemporal attention network. J. Healthc. Eng. 2021, 2021, 7799100. [Google Scholar] [CrossRef]
- Song, B.; Li, K.; Zong, Y.; Zhu, J.; Zheng, W.; Shi, J.; Zhao, L. Recognizing spontaneous micro-expression using a three-stream convolutional neural network. IEEE Access 2019, 7, 184537–184551. [Google Scholar] [CrossRef]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Yan, W.J.; Wang, S.J.; Chen, Y.H.; Zhao, G.; Fu, X. Quantifying micro-expressions with constraint local model and local binary pattern. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 296–305. [Google Scholar]
- Li, J.; Soladie, C.; Seguier, R. Local Temporal Pattern and Data Augmentation for Micro-Expression Spotting. IEEE Trans. Affect. Comput. 2020, 14, 811–822. [Google Scholar] [CrossRef]
- Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef]
- Zach, C.; Pock, T.; Bischof, H. A duality based approach for realtime tv-l 1 optical flow. In Proceedings of the Joint Pattern Recognition Symposium, Heidelberg, Germany, 12–14 September 2007; pp. 214–223. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Melacci, S.; Sarti, L.; Maggini, M.; Bianchini, M. A neural network approach to similarity learning. In Proceedings of the IAPR Workshop on Artificial Neural Networks in Pattern Recognition, Paris, France, 2–4 July 2008; pp. 133–136. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Module | MEGC2019-CD | CASME II | SMIC | SAMM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HARS | HARS (w/ A.) | AARS | UAR | UF1 | UAR | UF1 | UAR | F1 | UAR | UF1 |
✓ | ✕ | ✕ | 0.645 | 0.648 | 0.776 | 0.785 | 0.565 | 0.563 | 0.572 | 0.576 |
✕ | ✕ | ✓ | 0.633 | 0.632 | 0.768 | 0.796 | 0.533 | 0.535 | 0.503 | 0.516 |
✕ | ✓ | ✓ | 0.662 | 0.662 | 0.777 | 0.784 | 0.619 | 0.614 | 0.515 | 0.527 |
✓ | ✕ | ✓ | 0.680 | 0.679 | 0.751 | 0.765 | 0.658 | 0.646 | 0.538 | 0.562 |
Datasets | Negative | Positive | Surprise | Total |
---|---|---|---|---|
SMIC [5] | 70 | 51 | 43 | 164 |
CASME II [6] | 88 | 32 | 25 | 145 |
SAMM [7] | 92 | 26 | 15 | 133 |
MEGC19-CD (In total) [10] | 250 | 109 | 83 | 442 |
Methods | MEGC2019-CD | CASME II | SMIC | SAMM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | UAR | UF1 | Acc | UAR | UF1 | Acc | UAR | UF1 | Acc | UAR | UF1 | |
LBP-TOP [13] | 0.643 | 0.575 | 0.586 | 0.786 | 0.716 | 0.723 | 0.555 | 0.535 | 0.544 | 0.594 | 0.434 | 0.436 |
Bi-WOOF [18] | 0.661 | 0.593 | 0.604 | 0.773 | 0.698 | 0.713 | 0.592 | 0.574 | 0.580 | 0.624 | 0.439 | 0.443 |
ResNet18 [58] | 0.643 | 0.575 | 0.586 | 0.786 | 0.716 | 0.723 | 0.555 | 0.535 | 0.544 | 0.594 | 0.434 | 0.436 |
STSTNet [19] | 0.688 | 0.610 | 0.624 | 0.821 | 0.745 | 0.769 | 0.543 | 0.529 | 0.532 | 0.712 | 0.505 | 0.531 |
Dual-Incep [20] | 0.680 | 0.631 | 0.629 | 0.814 | 0.754 | 0.774 | 0.575 | 0.571 | 0.571 | 0.649 | 0.493 | 0.496 |
RCN_a [22] | 0.681 | 0.635 | 0.634 | 0.834 | 0.804 | 0.806 | 0.567 | 0.558 | 0.556 | 0.654 | 0.500 | 0.502 |
RCN_w [22] | 0.661 | 0.590 | 0.600 | 0.758 | 0.681 | 0.706 | 0.567 | 0.552 | 0.554 | 0.669 | 0.479 | 0.489 |
RCN_c [22] | 0.681 | 0.598 | 0.616 | 0.779 | 0.708 | 0.737 | 0.573 | 0.553 | 0.558 | 0.706 | 0.479 | 0.503 |
RCN_f [22] | 0.667 | 0.595 | 0.607 | 0.772 | 0.698 | 0.727 | 0.561 | 0.545 | 0.547 | 0.684 | 0.487 | 0.499 |
KFC-MER [43] | 0.313 | 0.235 | 0.255 | 0.276 | 0.220 | 0.229 | 0.345 | 0.251 | 0.283 | 0.316 | 0.246 | 0.240 |
MMNet [44] | 0.601 | 0.514 | 0.528 | 0.766 | 0.699 | 0.719 | 0.457 | 0.438 | 0.441 | 0.594 | 0.342 | 0.326 |
Dual-ATME | 0.720 | 0.680 | 0.679 | 0.817 | 0.751 | 0.765 | 0.646 | 0.658 | 0.646 | 0.714 | 0.538 | 0.562 |
Combinations | MEGC2019-CD | CASME II | SMIC | SAMM | ||||
---|---|---|---|---|---|---|---|---|
UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | |
E.&N. | 0.630 | 0.631 | 0.774 | 0.781 | 0.557 | 0.549 | 0.487 | 0.503 |
E.&M. | 0.680 | 0.679 | 0.751 | 0.765 | 0.658 | 0.646 | 0.538 | 0.562 |
F.&N. | 0.624 | 0.631 | 0.767 | 0.772 | 0.527 | 0.530 | 0.557 | 0.566 |
F.&M. | 0.622 | 0.629 | 0.760 | 0.766 | 0.542 | 0.545 | 0.526 | 0.541 |
Full-face | 0.663 | 0.670 | 0.810 | 0.828 | 0.591 | 0.591 | 0.543 | 0.553 |
MEGC2019-CD | CASME II | SMIC | SAMM | |||||
---|---|---|---|---|---|---|---|---|
UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | |
0 | 0.647 | 0.646 | 0.749 | 0.758 | 0.602 | 0.601 | 0.522 | 0.518 |
0.0001 | 0.668 | 0.666 | 0.741 | 0.755 | 0.637 | 0.628 | 0.546 | 0.559 |
0.001 | 0.668 | 0.668 | 0.745 | 0.762 | 0.635 | 0.623 | 0.531 | 0.547 |
0.01 | 0.680 | 0.679 | 0.751 | 0.765 | 0.658 | 0.646 | 0.538 | 0.562 |
0.1 | 0.649 | 0.651 | 0.788 | 0.794 | 0.596 | 0.594 | 0.498 | 0.503 |
Loss | Optimizer | MEGC2019-CD | CASME II | SMIC | SAMM | ||||
---|---|---|---|---|---|---|---|---|---|
UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | ||
CE | SGD | 0.644 | 0.642 | 0.765 | 0.783 | 0.591 | 0.581 | 0.504 | 0.516 |
CE | Adam | 0.673 | 0.671 | 0.748 | 0.768 | 0.643 | 0.634 | 0.514 | 0.527 |
w-CE | Adam | 0.668 | 0.666 | 0.751 | 0.769 | 0.643 | 0.634 | 0.520 | 0.533 |
Focal | Adam | 0.680 | 0.679 | 0.751 | 0.765 | 0.658 | 0.646 | 0.538 | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Huang, S.; Li, J.; Wang, S.-J. Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition. Entropy 2023, 25, 460. https://doi.org/10.3390/e25030460
Zhou H, Huang S, Li J, Wang S-J. Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition. Entropy. 2023; 25(3):460. https://doi.org/10.3390/e25030460
Chicago/Turabian StyleZhou, Haoliang, Shucheng Huang, Jingting Li, and Su-Jing Wang. 2023. "Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition" Entropy 25, no. 3: 460. https://doi.org/10.3390/e25030460
APA StyleZhou, H., Huang, S., Li, J., & Wang, S.-J. (2023). Dual-ATME: Dual-Branch Attention Network for Micro-Expression Recognition. Entropy, 25(3), 460. https://doi.org/10.3390/e25030460