Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability †
Abstract
:1. Introduction
2. Integrability Testing Algorithm
An Optimal Control Problem Aspect
3. Hidden Symmetry Analysis of the Parametrically-Dependent Nonlinear Kardar–Parisi–Zhang Equation
3.1. The Noether–Lax Equation and Its Asymptotic Solutions
3.2. Conserved Quantities and Dark Type Parametric Extensions of the Kardar–Parisi–Zhang Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertini, L.; Giacomin, G. Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 1997, 183, 571–607. [Google Scholar] [CrossRef]
- Family, F.; Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A Math. Gen. 1985, 18, L75–L81. [Google Scholar] [CrossRef]
- Tomohiro, S. The 1D Kardar–Parisi–Zhang equation: Height distribution and universality. Prog. Theor. Exp. 2016, 2016, 022A01. [Google Scholar] [CrossRef]
- Kardar, K.; Parisi, G.; Zhang, Y.Z. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 1986, 56, 889–892. [Google Scholar] [CrossRef]
- Corwin, I. The Kardar-Parisi-Zhang evolution equation and universality class. Random Matrices Theory Appl. 2012, 1, 1130001. [Google Scholar] [CrossRef]
- Talagrand, M. The Parisi formula. Ann. Math. 2006, 163, 221–263. [Google Scholar] [CrossRef]
- Frölich, J.; Zegarlinski, B. Some Comments on the Sherrington-Kirkpatrick Model of Spin Glasses. Commun. Math. Phys. 1987, 112, 553–566. [Google Scholar] [CrossRef]
- Krug, J.; Spohn, H. In Solids Far From Equilibrium: Growth, Morphology and Defects; Godreche, C., Ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Mourrat, J.-C. Parisi’s formula is a Hamilton-Jacobi equation in Wasserstein space. Can. J. Math. 2022, 74, 607–629. [Google Scholar] [CrossRef]
- Rodrigues, E.A.; Mello, B.A.; Oliveira, F.A. Growth exponents of the etching model in high dimensions. J. Phys. A Math. Theor. 2015, 48, 035001. [Google Scholar] [CrossRef]
- Hairer, M. Solving the KPZ equation. Ann. Math. 2013, 178, 559–566. [Google Scholar] [CrossRef]
- Boltz, H.-H.; Kierfeld, J. Stiff directed lines in random media. Phys. Rev. E 2013, 88, 012103. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.A.; Blum, T.; Doherty, J.P.; Marsili, M.; Bouchaud, J.-P.; Claudin, P. Glassy Solutions of the Kardar-Parisi-Zhang Equation. Phys. Rev. Lett. 1995, 74, 4257. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Prykarpatsky, Y.A.; Urbaniak, I.; Kycia, R.A.; Prykarpatski, A.K. Dark Type Dynamical Systems: The Integrability Algorithm and Applications. Algorithms 2022, 15, 266. [Google Scholar] [CrossRef]
- Bellman, R.E. Dynamic Programming; Dover: Mineola, NY, USA, 2003. [Google Scholar]
- Pontryagin, L.S.; Boltyanski, V.G.; Gamkrelidze, R.S.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Interscience: Geneva, Switzerland, 1962. [Google Scholar]
- Blackmore, D.; Prytula, M.; Prykarpatski, A. Quasi-linearization and integrability analysis of some self-dual, dark equations and a new dynamical system. Commun. Theor. Phys. 2022, 74, 105007. Available online: http://iopscience.iop.org/article/10.1088/1572-9494/ac5d28 (accessed on 18 January 2023). [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K. Dark equations and their light integrability. J. Nonlinear Math. Phys. 2014, 21, 407–428. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Dark equations. J. Nonlin. Math. Phys. 2001, 8, 363–445. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Mathematics of dispersive water waves. Commun. Math. Phys. 1985, 99, 51–73. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Takhtadjan, L.A. Hamiltonian Methods in the Theory of Solitons; Springer: New York, NY, USA; Berlin, Germany, 2000. [Google Scholar]
- Egorov, Y.V.; Shubin, M.A. Foundations of the Classical Theory of Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Shubin, M. Invitation to Partial Differential Equations; Braverman, M., McOwen, R., Toplalov, P., Eds.; AMS: Providence, RI, USA, 2020. [Google Scholar]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Benjamin Cummings: San Francisco, CA, USA, 1978. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Complete integrability of the nonlinear Ito and Benney-Kaup systems: Gradient algorithm and Lax representation. Theor. Math. Phys. 1986, 67, 586–596. [Google Scholar] [CrossRef]
- Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Samoilenko, A.M.; Prykarpatsky, Y.A. Algebraic-Analytical Aspects of Fully Integrated Dynamical Systems and Their Perturbations; Institute of Mathematics of the National Academy of Sciences of Ukraine: Kyiv, Ukraine, 2002; 237p. [Google Scholar]
- Kuchment, P.A. Floquet Theory for Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Tao, T. Nonlinear Dispersive Equations: Local and Global Analysis; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Blackmore, D.; Prykarpatsky, A.K.; Özçak, E.; Soltanov, K. Integrability analysis of a two-component Burgers-type hierarchy. Ukr. Math. J. 2015, 67, 2. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, Y.A.; Bogolubov, N.; Prykarpatski, A. Integrability of and differential-algebraic structures for spatially 1-D hydrodynamical systems of Riemann type. Chaos Solitons Fractals 2014, 59, 59–81. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatski, A.K.; Pukach, P.Y.; Vovk, M.I. Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability. Entropy 2023, 25, 308. https://doi.org/10.3390/e25020308
Prykarpatski AK, Pukach PY, Vovk MI. Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability. Entropy. 2023; 25(2):308. https://doi.org/10.3390/e25020308
Chicago/Turabian StylePrykarpatski, Anatolij K., Petro Y. Pukach, and Myroslava I. Vovk. 2023. "Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability" Entropy 25, no. 2: 308. https://doi.org/10.3390/e25020308
APA StylePrykarpatski, A. K., Pukach, P. Y., & Vovk, M. I. (2023). Symplectic Geometry Aspects of the Parametrically-Dependent Kardar–Parisi–Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability. Entropy, 25(2), 308. https://doi.org/10.3390/e25020308