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Abstract: A thermodynamically unstable spin glass growth model described by means of the
parametrically-dependent Kardar–Parisi–Zhang equation is analyzed within the symplectic geometry-
based gradient–holonomic and optimal control motivated algorithms. The finitely-parametric func-
tional extensions of the model are studied, and the existence of conservation laws and the related
Hamiltonian structure is stated. A relationship of the Kardar–Parisi–Zhang equation to a so called
dark type class of integrable dynamical systems, on functional manifolds with hidden symmetries,
is stated.
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1. Introduction

More than two hundred years ago the famous Gaussian distribution of random
equally distributed real quantities was discovered. This represented one of the greatest
societal contributions in mathematics, which allowed the development of a robust theory to
explain and analyze much of the randomness inherent in the physical world. Physical and
mathematical systems, described in terms of Gaussian statistics, are usually said to be in the
Gaussian universality class. This class is very wide, but is not all encompassing. For example,
classical extreme value statistics or Poisson statistics better capture the randomness and
severity of events, ranging from natural disasters to emergency room visits. Over the past
decades much effort has focused on evolution processes understanding [1–3], which are
not well described within the classically developed statistical universality classes. Owing
to the great impact of mathematical results in probability, PDEs, and representation theory,
in mathematical and, to a great extent, in statistical physics, a need to dig deep in the study
of systems that are not typically behaving statistical systems was recognized.

Amongst the newly revealed universally behaving stochastic systems, directed poly-
mers in random media and spin glasses, having characteristic thermodynamic parameters
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that display non-Gaussian limiting distributions and are described by means of the well
known [4] Kardar–Parisi–Zhang equation, emerged:

∂v/∂t = ∂2v/∂x2 − u(∂v/∂x)2/2 := K[v, u] (1)

with respect to the temperature t ∈ R+ evolution parameter,. These represent a new univer-
sality class, the KPZ universality class, where x ∈ R, a function v ∈ C2(R×R+;R) ⊂ Mv
describes the distribution function of a related random variable, and u ∈ C2(R×R+;R) ⊂
Mu is a parameter, which can often be directly (heuristically) computed for a particular
growth model from microscopic dynamics, specified by the statistical physics model under
regard. It is also worth noting that, since it is known that the universality of the KPZ
equation arises only [5] in the special case of the model of corner growth, it is essen-
tially equivalent [6] to the free energy of the directed random continuous polymer model,
which parametrically depends on the macroscopically determined functional variable
u ∈ Mu. As the related Gaussian distributing function, described by the classical diffusion
evolution flow

∂v/∂t = ∂2v/∂x2, (2)

on a functional manifold Mv ⊂ C(R;R) possessing a priori the only conservation law
1 =

∫
v(x, t)dx for all t ∈ R+, normalizing the total probability for any normalized initial

data v(·, 0) ∈ Mv, the KPZ Equation (1), in general, possesses no conservation law; if no
condition is imposed on the functional parameter u ∈ Mu and its long-time temperature
dependence.

As is well known, a simple non-linear Langevin-type Equation (1) allows [7–10] the
macroscopic thermodynamic properties of a wide variety of growth processes to be de-
scribed, such as the Eden model, growth of an interface in a random medium, randomly-
stirred fluids, dissipative transport in the driven–diffusion equation, the directed polymer
problem in a random potential and the behavior of flux lines in superconductors. Due to
its ubiquity, any advance in understanding [11] solutions to the KPZ equation is likely to
have wide significance [1–3] in both the fields of nonequilibrium thermodynamics and
dynamical theory disordered systems. As was demonstrated in [4,12,13] the KPZ equation
describes the long-time thermodynamics of the spin glass substrate growth well. Owing
to competition between the surface tension smoothing forces and internal aggregation
phase state, there is a tendency to prefer the direction of the local normal to the surface,
represented by the corresponding nonlinear term.

What is worth mentioning here is the fact that the parametrically-generalized spin glass
growth KPZ Equation (1) makes it possible to look at its thermodynamics from the optimal
control problem approach, as was recently observed in a very inspiring work [9]. In this
latter work, the relationship of the Hamilton-Jacobi theory to describing spin glass growth
distribution function with the KPZ Equation (1) was shown. In particular, the interesting
fact that the initial condition for the limiting spin glass free energy distribution function is
determined by the second order Hamilton-Jacobi equation, coinciding with the the KPZ
equation, was mentioned. The latter suggests an interesting statistical physics analysis of
the thermodynamic properties of the macroscopically determined parameter u ∈ Mu, on
which strongly depends the corresponding solutions [11] to the KPZ Equation (1). This
creates an opportunity to control the spin glass growth process and its thermodynamic
stability.

Thus, the problem arises as to how to describe the corresponding evolution constraints

∂u/∂t ?
= F[v, u] (3)

on a functional parameter u ∈ Mu ⊂ C(R;R), so as ensure to the existence of a nontrivial
hierarchy of conservation laws for the combined evolution system

∂v/∂t = ∂2v/∂x2 − u(∂v/∂x)2/2
∂u/∂t = F[v, u]

}
:= Q[v, u], (4)
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considered a smooth vector vield Q : Mv ×Mu → T(Mu ×Mv) on the combined func-
tional manifold Mv ×Mu, and which could be used for normalizing the corresponding
distribution function v ∈ C2(R×R+;R) for suitably chosen initial data v(·, 0) ∈ Mv.

To solve this problem effectively, we made use of the gradient–holonomic algorithm,
motivated by symplectic geometry techniques on functional manifolds [14,15], recently
devised for studying the integrability properties of nonlinear dynamical systems with
hidden symmetries and, in part, related with the optimal control theory [16,17] approach to
parametrically dependent processes. Being applied to the parametrically-extended Kardar–
Parisi–Zhang Equation (1) this algorithm allowed one to state that it belongs to a so called
dark type class [18–21] of integrable Hamiltonian dynamical systems on functional manifolds
with hidden symmetry. Namely, the parametrically-extended Kardar–Parisi–Zhang system
of Equation (4) reduces to the evolution flow

vt = vxx − uv2
x/2

ut = −uxx − (u2vx)x/2

}
(5)

on the combined functional manifold Mv × Mu possesses an infinite hierarchy of the
conserved quantities, providing thermodynamically stable spin glasses growth processes.
Moreover, it is a Lax type integrable Hamiltonian generalization of the dark type evolution
flow (1) with respect to a suitably constructed Poisson structure on the manifold Mv ×Mu.

This result, in particular, indicates that the parametrically-extended Kardar–Parisi–
Zhang Equation (1) possesses a rich internal hidden symmetry, allowing it to immerse into
an infinite hierarchy of Lax type, completely integrable, dynamical systems on a functional
manifold. Moreover, it also demonstrates that the Kardar–Parisi–Zhang Equation (1) allows
an infinite hierarchy of completely integrable many-parametric dark type extensions, which
can present some interesting applications to describing thermodynamical properties of
polymers, structures in random media and spin glasses. From this point of view it is
also interesting that the thermodynamically-based spin glass growth process control can
analyze a dependence of a thermodynamically quasistable substrate diffusion parameter
r ∈ C2(R×R+;R) ⊂ Mr subject to the internal aggregation state, giving rise to the follow-
ing physically more correct non-linear Langevin type equation:

∂v/∂t = ∂(r∂v/∂x)∂x− u(∂v/∂x)2/2 (6)

on the smooth functional manifold Mv,. the solutions of which, in general, are strongly
governed by the following temperature evolutions:

ut
?
= P[v.u, r], rt

?
= R[v.u, r] (7)

for some smooth vector fields P : Mu → T(Mu) and R : Mr → T(Mr). Based on our
approach to analyzing the parametrically-extended Kardar–Parisi–Zhang Equation (1),
one can effectively describe the evolutions (7), under which the generalized non-linear
Langevin type Equation (6) possesses a rich hierarchy of nontrivial conservation densities.
This is strongly useful for controlling the related polymer and spin glass growth processes
and their thermodynamic stability, and is considered a topic of our near future research.

2. Integrability Testing Algorithm

Consider now a nonlinear dynamical system (4) on a smooth 2π -periodic functional
manifold M := Mv ×Mu, which we assume to possess an infinite hierarchy of invariant
densities and is a priori Lax type [14,22] integrable. The latter, in particular, means, as
follows from the analysis in [15], that this infinite hierarchy of conservation laws is suitably
ordered by powers a complex parameter λ ∈ C and has a respectively complexified
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generating gradient vector function ϕ := ϕ[v, u; λ] ∈ T∗(M)⊗C, satisfying the Noether–
Lax differential–functional equation

∂ϕ/∂t + Q′,∗ϕ = 0. (8)

As follows from the expression (8), the gradient vector function ϕ ∈ T∗(M) ⊗ C pos-
sesses [23,24] the following asymptotic as λ→ ∞ solution

ϕ = (1, a1(x; λ), a2(x; λ), ..., am−1(x; λ))ᵀ exp[λs(σ)t + ∂−1σ(x; λ)], (9)

where
σ(x; λ) ∼ ∑

j∈Z+

σj[u]λ−j+s(σ), an(x; λ) ∼ ∑
j∈Z+

σj[v, u]λ−j+sn (10)

for some integers s(σ), sn ∈ Z+, n = 1, m− 1, which can be easily obtained upon substitu-
tion of the asymptotic solution (9) into (8). The representation (9), in particular, generates a
priori an infinite hierarchy of functionals

γj =
∫ 2π

0
σj[v, u]dx, (11)

j ∈ Z+, on the manifold M, being conservation laws for the nonlinear dynamical system
(4). The latter can be effectively used to construct additional structures inherent in this
dynamical system. In particular, if a functional H ∈ D(M) ∈ spanR {γj ∈ D(M) : j ∈ Z+}
can be represented in the following scalar form: H = (ψ|ux), and the element ψ ∈ T∗(M)
satisfies the modified Noether–Lax differential–functional equation

∂ψ/∂t + Q′,∗ψ = gradL (12)

for some smooth functional L ∈ D(M), , where the condition ψ′ 6= ψ′,∗ should hold.
The nonlinear dynamical system (4) proves to be a priori Hamiltonian with respect to the
symplectic structure ϑ−1 = ψ′ − ψ′,∗ : T(M)→ T∗(M) and is represented as the flow

ut = −ϑgrad[(ψ|Q)−L] (13)

on the functional manifold M. This makes it possible, in many practically important cases, to
obtain a next compatible Poisson structure η : T∗(M)→ T(M) on the manifold M, making
it possible to construct the related Lax type representation for the nonlinear dynamical
system (4).

An Optimal Control Problem Aspect

Thedre is considered a smooth nonlinear dynamical system

vt = K[v, u] (14)

on a 2π-periodic functional manifold Mv ⊂ C(R/{2πZ};Rm(v)), depending parametrically
on a 2π-periodic functional variable u ∈ Mu ⊂ C(R/{2πZ};Rm(u)). Then, one poses the
following Bellman–Pontriagin-type optimal control problem [16,17] for some smooth
Lagrangian density L : J(v,u)(R;R2)→ R on a temporal interval [0, T] ⊂ R+ :

v = arg inf
v∈Mv

∫ T

0
dt
∫ 2π

0
L[v, u]dx (15)

for a fixed functional parameter u ∈ M under the constraint that the evolution
flow (14) possesses a smooth conserved quantity γ =

∫ 2π
0 γ[u, v]dx ∈ D(Mv ×Mu), that is
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dγ/dt = 0 on the combined manifold Mv ×Mu for all t ∈ [0, T]. The latter, in particular,
means that we need to determine such an additional evolution flow

ut
?
= F[v, u] (16)

on the combined control manifold Mv ×Mv, which ensures the existence of the mentioned
conserved quantity γ ∈ D(Mv ×Mu). To solve this problem there it is suggested to analyze
the extended Lagrangian functional

L[v; µ, ψ] : =
∫ T

0
dt
[∫ 2π

0
L[v, u]dx + (ψ|vt − K[v, u]) + (17)

+µ(t)(gradγ[u, v]|(K[v, u], F[u, v])ᵀ)],

supplemented with Lagrangian multipliers µ ∈ C1
0([0, T];R) and ψ ∈ C1

0([0, T]; T∗(Mv))
almost everywhere with respect to the temporal parameter t ∈ [0, T], and, next, to study
its critical points:

δ L[v; µ, ψ] = 0 ∼ gradvL[v, u]− (ψt + K
′,∗
v [v, u]ψ)+

+µ(t)(∂gradγ/∂t + (K′,∗[v, u], F′,∗[v, u])ᵀgradγ) = 0
(18)

for all (v, u) ∈ Mv×Mu jointly with the condition that dγ/dt = 0 for t ∈ [0, T]. The obtained
functional relationship (18) reduces to the following generalized Noether–Lax condition

ψt + K
′,∗
v [v, u]ψ = grad L[v, u] (19)

on the Lagrangian multiplier ψ ∈ C1
0([0, T]; T∗(Mv)) ⊂ T∗(Mv), as the following Noether–

Lax equality
∂gradγ/∂t + (K′,∗[v, u], F′,∗[v, u])ᵀgradγ = 0 (20)

holds a priori for any smooth conservation law γ ∈ D(Mv ×Mu) of the joint dynamical
system

vt = K[v, u], vt = F[v, u] (21)

on the combined manifold Mv ×Mu.
A solution ψ ∈ T∗(Mv) to the condition (19) allows the unique representation as the

direct sum ψ = ψ̄⊕ ϕ of its skew symmetric ψ̄ ∈ T∗(Mv) and strictly symmetric ϕ ∈ T∗(Mv)
components, satisfying, respectively, the following differential–functional equations:

ψ̄t + K
′,∗
v [v, u]ψ̄ = grad L[v, u], (22)

where, by definition, ψ̄′v 6= ψ̄′,∗v on Mv ×Mu, and

ϕt + K
′,∗
v [v, u]ϕ = 0, (23)

where, by definition, ϕ′v = ϕ′,∗v on Mv ×Mu. Under the a priori assumed condition that the
evolution flow (14) is a Hamiltonian system on the functional manifold Mv with respect to the
related symplectic structure Ω ∈ T∗(Mv) ∧ T∗(Mv), the differential-functional Equation (22)
is always [14,25,26] solvable, giving rise to the known differential–geometric relationship

Ω = ψ̄′v − ψ̄′,∗v , (24)

subject to which the following compatible vector field representation

K = −Ω−1grad [( ψ̄|K)−L] (25)
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holds on Mv × Mu. Simultaneously, the differential–functional Equation (23) is also al-
ways [14,25,26] solvable under the condition that ϕ = grad γ ∈ T∗(Mv) for some conserved
quantity γ ∈ D(Mv ×Mu) of the evolution flow (14) regardless of whether the evolution
flow (14) on Mv is Hamiltonian or not.

The differential–functional Equation (23) can be considered, in general, as a linear evo-
lution partial differential equation on the complexified vector-function ϕ ∈ T∗(Mv)⊗C,
which always possesses [23,24] an asymptotic as λ → ∞ solution (9) with a priori local
smooth densities σj[v, u] ∈ C∞(J(R/{2πZ}; Rm(v) × Rm(u));R), j ∈ Z+, which are con-

served, that is d
dt

∫ 2π
0 σj[u, v]dx = 0 for all j ∈ Z+. Additionally, the evolution flow (14)

on the functional manifold Mv is a priori assumed to possess the conserved quantity
γ ∈ D(Mv × Mu), its gradient ϕ := gradvγ[u, v] ∈ T∗(Mv) necessarily satisfies the
Noether–Lax differential-functional Equation (23), ensuring the existence of its asymptotic
solution in the form (9). The latter condition, as the first step, makes it possible to regularly
check the existence of the hidden symmetries mentioned above. In particular, local con-
served quantities, by a second step, construct the searched additional evolution flow (16),
solving our optimal control problem (15). Moreover, if the conserved quantities obtained
this way prove to be suitably ordered, this case strictly corresponds to the completely
integrable evolution flow

vt = K[v, u]
ut = F[v, u]

}
:= Q[v, u] (26)

on the extended functional manifold Mv ×Mu. Below we apply the described symplectic
geometry-based and optimal control problem motivated integrability problem solving
algorithm to a new interesting class of the so called dark type nonlinear dynamical systems,
the analytical studies of which were initiated by B. Kupershmidt [20,21], who demonstrated
their interesting hidden symmetry and other related mathematical properties.

3. Hidden Symmetry Analysis of the Parametrically-Dependent Nonlinear
Kardar–Parisi–Zhang Equation
3.1. The Noether–Lax Equation and Its Asymptotic Solutions

To analyze the existence of the conserved quantities for the parametrically-dependent
KPZ- evolution system (4)

∂v/∂t = ∂2v/∂x2 − u(∂v/∂x)2/2,
∂u/∂t = F[v, u]

}
, (27)

on the 2π-periodic manifold Mv ×Mu, we will make use of the symplectic geometry based
algorithmic scheme, devised in [14,15,27–29], within which, in particular, one needs to
study special asymptotic λ→ ∞ solutions to the following Noether–Lax equation

ϕt + K
′,∗
v [v, u]ϕ = 0 (28)

on the vector ϕ ∈ T∗(Mv)⊗C, where, by definition, K
′,∗
v [v, u] : T∗(Mv)→ T∗(Mv) denotes

the adjoining mapping [14,25,26] subject to the natural bilinear form (·|·) : T∗(Mv) ×
T(Mv)→ R to the Frechet derivative mapping K

′
v[v, u] : T∗(Mv)→ T∗(Mv) with respect

to the variable v ∈ Mv. In our case the Equation (1) looks as follows:

ϕt + ϕxx + (uvx)x ϕ + uvx ϕx = 0, (29)

the asymptotic λ→ ∞ solution [23,24,30,31] solution is representable as

ϕ = exp(−λ2t + ∂−1σ), σ ∼ ∑
j∈Z+∪{−1}

σj[v, u]λ−j. (30)
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Having substituted the solution (30) into (29), one can easily obtain an infinite hierarchy of
the following recurrent relationships:

− δj,−2 + ∂−1σj,t + σj,x + (uvx)xδj,0 + uvxσj + ∑
k∈Z+∪{−2,−1}

σj−kσk = 0, (31)

where δj,k, j, k ∈ Z+ ∪ {−2,−1} denote the Koronecker symbols and ∂−1(...) :=
1
2

[∫ x
0 (...)ds−

∫ 2π
x (...)ds

]
is the inverse to the differentiation ∂/∂x operator: ∂/∂x · ∂−1 = 1

for all x ∈ R/{2πZ}. The solution of the relationships (31) gives rise to the following
conserved quantities:

σ−1 = 1, σ0 = −uvx/2, σ1 =
1
4
[∂−1(uvx)t − (uvx)x + (uvx)

2/2], ... (32)

which can be successively continued, if one takes into account that the density σ0 = −uvx/2
should be a priori conserved. The latter makes it possible to easily state that all the
densities {σj : j ∈ N} are conserved, if, to put by definition, that

(uvx)t = (uvx)xx − uvx (uvx)x. (33)

This means, in particular, that the resulting system of two evolution Equations (1) and (33)
possesses no other local conservation laws and is a Lax type integrable of the dark type.
Now, taking into account the evolution Equation (4), we obtain the evolution flow we were
looking for on the functional variable u ∈ Mu :

ut = uxx − 1/2uuxvx + 2uxvxxv−1
x . (34)

Thus, we can formulate the following proposition.

Proposition 1. The parametrically-extended Kardar–Parisi–Zhang equation

vt = vxx − uv2
x/2

ut = uxx − 1/2uuxvx + 2uxvxxv−1
x

}
:= Q[v, u] (35)

on the combined functional manifold Mv ×Mu possesses only one local conserved quantity

γ0 =
∫

uvxdx, (36)

providing the thermodynamically stable spin glass growth process, and presenting a Lax type
linearized generalization of the dark type evolution flow (1).

Proof. The Lax type integrability of the combined Kardar–Parisi–Zhang Equation (35)
easily follows from the extended Noether–Lax equation

ψt + Q′,∗ψ = 0, (37)

for an element ψ ∈ T∗(Mv ×Mu)⊗C, having asymptotic λ→ ∞ as a solution

ψ = (1, a)ᵀ exp(−λ2t + ∂−1σ), (38)

σ ∼ ∑
j∈Z+∪{−1}

σj[v, u]λ−j, a ∼ ∑
j∈Z+

aj[v, u]λ−j,

generates the same as the above truncated hierarchy of conserved densities {σj = 0 : j ∈ N}.
The latter gives rise, following the scheme devised in [32,33], to the Lax type linearization
of the nonlinear dynamical system (35).
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We can observe here that the functional parameter u ∈ Mu satisfies a perturbed diffu-
sion type Burgers evolution equation, which represents some hidden physical properties of
the related KPZ Equation (1).

3.2. Conserved Quantities and Dark Type Parametric Extensions of the Kardar–Parisi–
Zhang Equation

Consider now the following from (32) first conserved quantity:

σ1 =
1
4
[∂−1(uvx)t − (uvx)x + (uvx)

2/2], (39)

which makes it possible to put, by definition, that

(uvx)t = px − 3/2uvx(uvx)x, (40)

where an additional parametric variable p ∈ Mp ⊂ C(R;R). The latter, in particular, means
that if Mp ⊂ {p : J(u,v)(R;R2)→ R}, then the related evolution flow

ut = F[v, u] (41)

should satisfy the following from (40) the differential–functional condition:

(Fvx)
′,∗(1) + (uvxxx − uuxv2

x/2− u2vxvxx)
′,∗(1) = 0, (42)

easily reducing to the next system of differential–functional relationships:

F′,∗v vx − Fx − uxxx − (uuxvx)x = 0, (43)

F′,∗u vx + vxxx − uvxvxx = 0

on the manifold Mv ×Mu. The second differential–functional relationship of (43) is easily
solved as

F
′,∗
u = −∂2/∂x2 + αuvx∂/∂x + (1− α)/2u∂/∂x ◦ vx ⇒ (44)

⇒ F′u = −∂2/∂x2 − α∂/∂x ◦ uvx + (α− 1)/2vx∂/∂x ◦ u⇒

⇒ F[v, u] = −uxx − α
(

u2vx/2
)

x
+ (α− 1)/2vxuux,

where α ∈ R is some parameter. Substitution of the result (44) into the first differential–
functional relationship of (43) gives rise to the constraint α = 1, thus ensuring the existence
of the smooth evolution flow

ut = −uxx −
(

u2vx

)
x
/2 := F[v, u], (45)

on the functional manifold Mu, a priori generating, owing to the recurrence relationships
(30), an infinite hierarchy of the nontrivial conservation laws:

γ0 =
∫

uvxdx, γ1 :=
∫

σ1[u, v]dx = −1
8

∫
(u2v2

x + 4uxvx)dx, (46)

γ2 :=
∫

σ2[u, v]dx =
1
2

∫
xσ1,t[u, v]dx, ..., γj+1 :=

1
2

∫
xσj,t[u, v]dx, ...

for all j ∈ N. Thus, the obtained result can be formulated as the next proposition.

Proposition 2. The parametrically-extended Kardar–Parisi–Zhang system of equations

vt = vxx − uv2
x/2

ut = −uxx − (u2vx)x/2

}
:= Q[v, u] (47)
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on the combined functional manifold Mv × Mu possesses an infinite hierarchy of the
conserved quantities

γ0 =
∫

uvxdx, γ1 :=
∫

σ1[u, v]dx = −1
8

∫
(u2v2

x + 4uxvx)dx, (48)

γ2 :=
∫

σ2[u, v]dx =
1
2

∫
xσ1,t[u, v]dx, ..., γj+1 :=

1
2

∫
xσj,t[u, v]dx, ...

for all j ∈ N, providing thermodynamically stable spin glass growth process, and presents a Lax
type integrable Hamiltonian generalization of the dark type evolution flow (1):

(vt, ut)
ᵀ = −ϑgradH[v, u], (49)

where H =
∫
(uxvx + u2v2

x/4)dx is its Hamiltonian function and

ϑ =

(
0 1
−1 0

)
(50)

denotes the corresponding Poisson structure on the manifold Mv ×Mu.

Proof. The Lax type integrability of the combined dynamical system (47) easily follows
from the extended Noether–Lax equation

ψt + Q′,∗ψ = 0, (51)

for an element ψ ∈ T∗(Mv ×Mu)⊗C, whose asymptotic as λ→ ∞ solution

ψ = (1, a)ᵀ exp(−λ2t + ∂−1σ), σ ∼ ∑
j∈Z+∪{−1}

σj[v, u]λ−j, a ∼ ∑
j∈Z+

aj[v, u]λ−j,

generates an infinite hierarchy of the nontrivial conserved densities {σj : J(u,v)(R;R2)→
R : j ∈ Z+}, coinciding exactly with those (46), derived above. Following the scheme
from [32,33], one easily derives the Lax type linearization of the nonlinear dynamical
system (47).

To state that the dynamical system (47) is Hamiltonian, we make use of the constructive
algorithm, devised in [14,22,28] and based on the differential-geometric and symplectic
structures of the conservation laws (48). Namely, let us consider the first nontrivial
conservation law γ0 ∈ D(M) and represent it in the following canonical Lagrangian form:

γ0 =
∫

uvx =
1
2

∫
(uvx − uxv)dx = ((u,−v)ᵀ/2|(vx, ux)

ᵀ) := −(ψ|(vx, ux)
ᵀ), (52)

where the vector ψ = 1/2(−u, v)ᵀ ∈ T∗(Mv ×Mu) satisfies the following Noether–Volerra
condition:

LQψ = ψt + Q′,∗ψ = (−u2vx)x/2, uv2
x/2)ᵀ = gradL[v, u], (53)

where LQ : T∗(Mv ×Mu)→ T∗(Mv ×Mu) denotes the usual Lie derivative with respect
to the vector field Q : Mv × Mu → T(Mv × Mu), defined by the nonlinear dynamical
system (47), and we put, by definition, the functional L :=

∫ (
u2v2

x/2
)
dx. Taking now

into account that the Noether–Volerra condition (53) can be equivalently rewritten as

(vt, ut)
ᵀ = Q[v, u] = −ϑgrad[(ψ|Q)−L][v, u], (54)

meaning the Hamiltonian representation of the parametrically-generalized Kardar–Parisi–
Zhang evolution flow (47):

(vt, ut)
ᵀ = −ϑgradH[v, u], (55)
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where we put, by definition,

ϑ−1 : = ψ′ − ψ′,∗ =

(
0 1
−1 0

)
, (56)

H : = (ψ|Q)−L =
∫
(uxvx + u2v2

x/4)dx,

having denoted by ϑ : T∗(Mv ×Mu)→ T(Mv ×Mu) the corresponding skew–symmetric
Poisson operator on the combined functional manifold Mv ×Mu and the related Hamiltonian
function H = −4γ1 ∈ D(Mv × Mu)). The same way, having used the derived above
hierarchy of conservation laws, one can construct other compatible with (56) Poisson structures
on the functional manifold Mv ×Mu, ensuring the related Lax type linearization [14,22] of
the parametrically-extended Kardar–Parisi–Zhang system of Equations (47).

The corresponding scrutinized analysis of the infinite hierarchy of recurrent rela-
tionships (31) shows that the scheme developed above by expanding the KPZ evolution
Equation (1) on additional parametric functional manifolds Mṕ := Mp1 ×Mp2 × ...×Mpn

can be successively continued by means of introducing new functional variables pj ∈
Mpj ⊂ C(R;R), j = 1, n, for arbitrary natural n ∈ N and for suitably determining the
corresponding evolutions pj,t = Pj[v, u, p1, p2, ..., pj] on functional manifolds Mpj , under
which the joint dynamical system

vt = vxx − uv2
x/2, ut = F[v, u, p1], (57)

p1,t = P1[v, u, p1], ..., pn,t = Pn[v, u, p1, p2, ..., pn]

possesses an infinite hierarchy of suitably ordered conservation laws on the functional mani-
folds Mṕ := Mp1 ×Mp2 × ...×Mpn and represents a nonlinear integrable dynamical system.

For instance, taking now into account that the density σ0 : J(u,v)(R;R2)→ R is a priori
a conserved quantity, its temporal derivative σ0,t : J(u,v,p)(R;R3)→ R can be represented
as full ∂/∂x-derivative:

σ0,t = −
1
2
(px − uvx(uvx)x), (uvx)t = (A[v, u]p)x − uvx(uvx)x, (58)

for some new functional variable p ∈ Mp ⊂ C(R;R), whose unknown A

pt = P[v, u, p] (59)

depends on the condition that the related density σ1 : J(v,u,p)(R;R3) → R is conserved,
that is

(A[v, u]p)t = η[v, u, p]x (60)

for some densities A : J(v,u)(R;R2) → R and η : J(v,u,p)(R;R3) → R. The latter is easily
reduced to the following differential condition

(At)
′,∗
v p + A′,∗v P + P′,∗v A = 0, (61)

(At)
′,∗
u p + A′,∗u P + P′,∗u A = 0,

(At)
′,∗
p p + At + A′,∗u P + P′,∗u A = 0

should hold under the following temporal evolutions

vt = vxx − uv2
x/2, pt = P[v, u, p], (62)

ut = (A[v, u]p)xv−1
x − uv−1

x v3x − uuxvx/2

for all (v, u, p) ∈ Mv × Mu × Mp. The obtained determining expressions (61) can be ef-
fectively dissolved subject to the evolution flow (59) under some suitably chosen density
A : J(v,u)(R;R2)→ R, as these expressions are looking too complicated for their analytical
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solution. A unique clue concerning the general form of the density A : J(v,u)(R;R2)→ R
consists in its dimensional symmetry, easily following from the third equation of the
evolution Equation (62). For instance, if dim(A) = dim(u2

xv), then A[v, u] = u2
xv + c1u2

x +
c2u2v2

x + c3uxx/v + c4uxvxuv−1 + ...., where the coefficients cj ∈ R, j ∈ N, can be succes-
sively determined from the system (61) simultaneously with the corresponding expression
for the evolution (59) by means of simple, yet slightly cumbersome, analytical calculations,
which we plan to present within a separate work under preparation.

4. Conclusions

We sketched a symplectic geometric scheme of studying dark type nonlinear dynamical
systems with hidden symmetries and applied it to analyzing the well known parametrically-
dependent Kardar–Parisi–Zhang equation, describing spin glass growth dynamics. Its finitely-
parametric evolution extensions, possessing a finite number of conserved quantities, and
important for effective modeling of new quasi-stable materials, were constructed in detail by
means of the differential–geometrically based gradient–holonomic and optimal control moti-
vated integrability problem solving algorithms. A relationship between the parametrically-
generalized Kardar–Parisi–Zhang type Hamiltonian flow to a so called dark type class of
integrable dynamical systems on functional manifolds with hidden symmetries was described.
The relationship possesses infinite hierarchies of nontrivial conserved quantities and is Lax
type linearizable on a suitably extended functional manifold.
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