Wavelet Entropy: A New Tool for Edge Detection of Potential Field Data
Abstract
:1. Introduction
2. Methods
2.1. Wavelet Decomposition
2.2. Wavelet Energy
2.3. Wavelet Space Entropy
- First, 2D potential field data with dimensions of M × N were decomposed into different wavelet decomposition levels (k = 1 to D) to obtain approximation coefficients and detail (horizontal, vertical, and diagonal) coefficients using Equations (A1)–(A10). The analyzing wavelet used was Daubechies of order one (db1) at the first level.
- The horizontal and vertical detail coefficients were combined and normalized to calculate the mean, total, and relative wavelet energies using a window of length Lx × Ly at a specific level using Equations (6)–(8). We avoided the utility of the diagonal detail coefficients due to their poor resolution and noisy information.
- The normalized wavelet space entropy was calculated with the relative wavelet energy using Equation (9).
3. Synthetic Cases
3.1. Performance Analysis
3.1.1. Comparison with Conventional Methods
3.1.2. Effect of Noise
4. Application to Bishop Model
5. Source Boundaries in the Delhi Fold Belt Region
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Multiresolution Analysis Using DWT
References
- Fairhead, J.D.; Salem, A.; Cascone, L.; Hammill, M.; Masterton, S.; Samson, E. New developments of the magnetic tilt-depth method to improve structural mapping of sedimentary basins. Geophys. Prospect. 2011, 59, 1072–1086. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, W.; Zeng, X.; Zhang, Z. Edge enhancement of potential field data using spectral moments. Geophysics 2016, 81, G1–G11. [Google Scholar] [CrossRef]
- Dwivedi, D.; Chamoli, A. Source Edge Detection of Potential Field Data Using Wavelet Decomposition. Pure Appl. Geophys. 2021, 178, 919–938. [Google Scholar] [CrossRef]
- Evjen, H.M. The place of the vertical gradient in gravitational interpretations. Geophysics 1936, 1, 127–136. [Google Scholar] [CrossRef]
- Arısoy, M.Ö.; Dikmen, Ü. Edge enhancement of magnetic data using fractional-order-derivative filters. Geophysics 2015, 80, J7–J17. [Google Scholar] [CrossRef]
- Cordell, L.; Grauch, V.J.S. Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In The Utility of Regional Gravity and Magnetic Anomaly Maps; Society of Exploration Geophysicists: Houston, TX, USA, 1985; pp. 181–197. [Google Scholar]
- Blakely, R.J.; Simpson, R.W. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 1986, 51, 1494–1498. [Google Scholar] [CrossRef]
- Hidalgo-Gato, M.C.; Barbosa, V.C.F. Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles. Geophysics 2015, 80, J27–J36. [Google Scholar] [CrossRef]
- Miller, H.G.; Singh, V. Potential field tilt—a new concept for location of potential field sources. J. Appl. Geophys. 1994, 32, 213–217. [Google Scholar] [CrossRef]
- Verduzco, B.; Fairhead, J.D.; Green, C.M.; MacKenzie, C. New insights into magnetic derivatives for structural mapping. Lead. Edge 2004, 23, 116–119. [Google Scholar] [CrossRef]
- Ferreira, F.J.F.; de Souza, J.; de B. e. S. Bongiolo, A.; de Castro, L.G. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 2013, 78, 1MJ-Z75. [Google Scholar] [CrossRef]
- Santos, D.F.; Silva, J.B.C.; Barbosa, V.C.F.; Braga, L.F.S. Deep-pass — An aeromagnetic data filter to enhance deep features in marginal basins. Geophysics 2012, 77, J15–J22. [Google Scholar] [CrossRef]
- Wijns, C.; Perez, C.; Kowalczyk, P. Theta map: Edge detection in magnetic data. Geophysics 2005, 70, L39–L43. [Google Scholar] [CrossRef]
- Nasuti, Y.; Nasuti, A.; Moghadas, D. STDR: A Novel Approach for Enhancing and Edge Detection of Potential Field Data. Pure Appl. Geophys. 2019, 176, 827–841. [Google Scholar] [CrossRef]
- Pham, L.T.; Eldosouky, A.M.; Oksum, E.; Saada, S.A. A new high resolution filter for source edge detection of potential field data. Geocarto Int. 2022, 37, 3051–3068. [Google Scholar] [CrossRef]
- Moreau, F.; Gibert, D.; Holschneider, M.; Saracco, G. Wavelet analysis of potential fields. Inverse Probl. 1997, 13, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Chamoli, A.; Srivastava, R.P.; Dimri, V.P. Source depth characterization of potential field data of Bay of Bengal by continuous wavelet transform. Indian J. Mar. Sci. 2006, 35, 195–204. [Google Scholar]
- Chamoli, A.; Pandey, A.K.; Dimri, V.P.; Banerjee, P. Crustal configuration of the Northwest Himalaya based on modeling of gravity data. Pure Appl. Geophys. 2011, 168, 827–844. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Lockwood, O.G.; Kanamori, H. Wavelet analysis of the seismograms of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochem. Geophys. Geosystems 2006, 7. [Google Scholar] [CrossRef]
- Chamoli, A.; Swaroopa Rani, V.; Srivastava, K.; Srinagesh, D.; Dimri, V.P. Wavelet analysis of the seismograms for tsunami warning. Nonlinear Process. Geophys. 2010, 17, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Chamoli, A.; Ram Bansal, A.; Dimri, V.P. Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Comput. Geosci. 2007, 33, 83–93. [Google Scholar] [CrossRef]
- Leise, T.L.; Harrington, M.E. Wavelet-based time series analysis of Circadian rhythms. J. Biol. Rhythms 2011, 26, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Telesca, L.; Lovallo, M.; Chamoli, A.; Dimri, V.P.; Srivastava, K. Fisher-Shannon analysis of seismograms of tsunamigenic and non-tsunamigenic earthquakes. Phys. A Stat. Mech. Its Appl. 2013, 392, 3424–3429. [Google Scholar] [CrossRef]
- Telesca, L.; Chamoli, A.; Lovallo, M.; Stabile, T.A. Investigating the Tsunamigenic Potential of Earthquakes from Analysis of the Informational and Multifractal Properties of Seismograms. Pure Appl. Geophys. 2015, 172, 1933–1943. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. Fisher-shannon analysis of wind records. Int. J. Energy Stat. 2013, 01, 281–290. [Google Scholar] [CrossRef]
- AghaKouchak, A. Entropy-copula in hydrology and climatology. J. Hydrometeorol. 2014, 15. [Google Scholar] [CrossRef] [Green Version]
- Nicolis, O.; Mateu, J. 2D Anisotropic Wavelet Entropy with an Application to Earthquakes in Chile. Entropy 2015, 17, 4155–4172. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.L.E.F.; Corso, G. Microseismic event detection in noisy environments with instantaneous spectral Shannon entropy. Phys. Rev. E 2022, 106, 014133. [Google Scholar] [CrossRef] [PubMed]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S. Edge detection method based on wavelet space entropy and Canny algorithm. In Proceedings of the 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology, Shenzhen, China, 28–30 October 2011; pp. 245–249. [Google Scholar]
- Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Rosso, O.A.; Martin, M.T.; Figliola, A.; Keller, K.; Plastino, A. EEG analysis using wavelet-based information tools. J. Neurosci. Methods 2006, 153, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Pérez, D.G.; Zunino, L.; Garavaglia, M.; Rosso, O.A. Wavelet entropy and fractional Brownian motion time series. Phys. A Stat. Mech. Its Appl. 2006, 365, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Scully, T.; Perera, A.G.; Lambert, A.; Chahl, J. A low redundancy wavelet entropy edge detection algorithm. J. Imaging 2021, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, B.K. Magnetic anomalies due to prism-shaped bodies with arbitrary polarization. Geophysics 1964, 29, 517–531. [Google Scholar] [CrossRef]
- Williams, S.; Derek Fairhead, J.; Flanagan, G. Realistic models of basement topography for depth to magnetic basement testing. SEG Tech. Progr. Expand. Abstr. 2002, 21. [Google Scholar] [CrossRef]
- Salem, A.; Williams, S.; Fairhead, D.; Smith, R.; Ravat, D. Interpretation of magnetic data using tilt-angle derivatives. Geophysics 2008, 73, 14JF-Z11. [Google Scholar] [CrossRef]
- Salem, A.; Green, C.; Cheyney, S.; Fairhead, J.D.; Aboud, E.; Campbell, S. Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea. Interpretation 2014, 2, T69–T78. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, D.; Chamoli, A.; Pandey, A.K. Crustal structure and lateral variations in Moho beneath the Delhi fold belt, NW India: Insight from gravity data modeling and inversion. Phys. Earth Planet. Inter. 2019, 297, 106317. [Google Scholar] [CrossRef]
- Dwivedi, D.; Chamoli, A. Seismotectonics and lineament fabric of Delhi fold belt region, India. J. Earth Syst. Sci. 2022, 131, 74. [Google Scholar] [CrossRef]
- Geological Survey of India and National Geophysical Research Institute. GSI-NGRI; “Gravity Map Series of India”; Geological Survey of India and National Geophysical Research Institute: Hyderabad, India, 2006. [Google Scholar]
Model | Prismatic Source | Length (m) | Width (m) | Extent (m) | Total Magnetization (A/m) | Susceptibility (SI) | Z Top (m) | Inclination of Prism (Degree) |
---|---|---|---|---|---|---|---|---|
M1 | S1 | 2400 | 400 | 700 | 2.6 | +0.05 | 300 | 0 |
S2 | 400 | 2400 | 700 | 2.6 | +0.05 | 400 | 45 | |
S3 | 400 | 2400 | 700 | 2.6 | +0.05 | 300 | −45 | |
S4 | 2400 | 2400 | 400 | 2.6 | +0.05 | 400 | 0 | |
S5 | 1000 | 1000 | 200 | 2.6 | +0.05 | 200 | 0 | |
S6 | 300 | 300 | 200 | 2.6 | +0.05 | 100 | 0 |
Model | Prismatic Source | Length (m) | Width (m) | Extent (m) | Total Magnetization (A/m) | Susceptibility (SI) | Z Top (m) | Inclination of Prism (degree) |
---|---|---|---|---|---|---|---|---|
M2 | S1 | 2600 | 600 | 700 | 2.1 | +0.04 | 220 | 0 |
S2 | 200 | 2200 | 700 | −1.8 | −0.04 | 220 | 45 | |
S3 | 200 | 2200 | 700 | 2.1 | +0.04 | 250 | −45 | |
S4 | 2000 | 2000 | 400 | −2.3 | −0.05 | 320 | 30 | |
S5 | 800 | 800 | 200 | 2.6 | +0.05 | 150 | 0 | |
S6 | 200 | 200 | 200 | 3.2 | +0.06 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwivedi, D.; Chamoli, A.; Rana, S.K. Wavelet Entropy: A New Tool for Edge Detection of Potential Field Data. Entropy 2023, 25, 240. https://doi.org/10.3390/e25020240
Dwivedi D, Chamoli A, Rana SK. Wavelet Entropy: A New Tool for Edge Detection of Potential Field Data. Entropy. 2023; 25(2):240. https://doi.org/10.3390/e25020240
Chicago/Turabian StyleDwivedi, Divyanshu, Ashutosh Chamoli, and Sandip Kumar Rana. 2023. "Wavelet Entropy: A New Tool for Edge Detection of Potential Field Data" Entropy 25, no. 2: 240. https://doi.org/10.3390/e25020240