Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network
Abstract
:1. Introduction
2. Preliminaries
2.1. Hopping Network
2.2. Time Window
2.3. Delayed Packet Loss
2.4. Problem Statement
3. Proposed Scheme
3.1. Delay Time Window Compensation Mechanism
- (1)
- For RTW(j) = STW(j), let rtb(j) − rta(j) = stb(j) − sta(j), then rtb(j) = stb(j) and rta(j) = sta(j).
- (2)
- For RTW(j) = ATW(j), assume that d is the network delay and w~ denotes a period of time (delay time window). Under the condition that step (1) and (2) are satisfied, it follows that ata(j) = sta(j) + d, atb(j) = stb(j) + d, rta(j) = sta(j) + w~ and rtb(j) = stb(j) + w~. Conversely, the values of rta(j) and rtb(j) can be determined as long as the estimated value of w~ is obtained and w~ = d, again satisfying STW(j) = RTW(j) and ATW(j) = RTW(j).
- Necessity means that a delay time window compensation mechanism must solve the problem of delayed packet loss and related problems.
- Possibility means that there may be a suitable delay time window length, i.e., a value of w~ (see Figure 6).
3.2. Estimation for Delay Time Window
4. Performance
4.1. Error Evaluation
4.2. Experimental Evaluation
5. Summary and Future Research
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TW | time window |
STW | sending time window |
RTW | receiving time window |
ATW | arrival-data time window |
ODRT | overlapping data reception time |
FDTT | idle data sending time |
References
- Jajodia, S.; Ghosh, A.K.; Swarup, V.; Wang, C.; Wang, X.S. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats; Springer Science & Business Media: New York, NY, USA, 2011; Volume 54. [Google Scholar]
- Carvalho, M.; Ford, R. Moving-target defenses for computer networks. IEEE Secur. Priv. 2014, 12, 73–76. [Google Scholar] [CrossRef]
- Xu, J.; Guo, P.; Zhao, M.; Erbacher, R.F.; Zhu, M.; Liu, P. Comparing different moving target defense techniques. In Proceedings of the First ACM Workshop on Moving Target Defense, Scottsdale, AZ, USA, 7 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 97–107. [Google Scholar]
- Cai, G.; Wang, B.; Wang, T.; Luo, Y.; Wang, X.; Cui, X. Research and development of moving target defense technology. J. Comput. Res. Dev. 2016, 53, 968. [Google Scholar]
- Webber, F.; Pal, P.P.; Atighetchi, M.; Jones, C.; Rubel, P. Applications That Participate in Their Own Defense (APOD); BBN Technologies: Cambridge, MA, USA, 2003. [Google Scholar]
- Chang, S.-Y.; Park, Y.; Babu, B.; Babu, A. Fast IP Hopping Randomization to Secure Hop-By-Hop Access in SDN. IEEE Trans. Netw. Serv. Manag. 2019, 16, 308–320. [Google Scholar] [CrossRef]
- Luo, Y.-B.; Wang, B.-S.; Wang, X.-F.; Hu, X.-F.; Cai, G.-L.; Sun, H. RPAH: Random Port and Address Hopping for Thwarting Internal and External Adversaries. In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015. [Google Scholar]
- Fenske, E.; Brown, D.; Martin, J.; Mayberry, T.; Ryan, P.; Rye, E. Three Years Later: A Study of MAC Address Randomization in Mobile Devices and When It Succeeds. Proc. Priv. Enhancing Technol. 2021, 3, 164–181. [Google Scholar] [CrossRef]
- Chang, S.Y.; Park, Y.; Muralidharan, A. Fast address hopping at the switches: Securing access for packet forwarding in SDN. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 454–460. [Google Scholar]
- Hong, S.; Xu, L.; Wang, H.; Gu, G. Poisoning Network Visibility in Software-Defined Networks: New Attacks and Countermeasures: New Attacks and Countermeasures. In Proceedings of the Network and Distributed System Security (NDSS), San Diego, CA, USA, 8–11 February 2015. [Google Scholar]
- Chang, S.Y.; Hu, Y.C. SecureMAC: Securing wireless medium access control against insider denial-of-service attacks. IEEE Trans. Mob. Comput. 2017, 16, 3527–3540. [Google Scholar] [CrossRef]
- Al-Shaer, E.; Duan, Q.; Jafarian, J.H. Security and Privacy in CommunicationNetworks—SecureComm (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering). In Random Host Mutation for Moving Target Defense; Keromytis, A.D., Pietro, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 106, pp. 310–327. [Google Scholar]
- Dunlop, M.; Groat, S.; Urbanski, W.; Marchany, R.; Tront, J. MT6D: A moving target IPv6 defense. In Proceedings of the 2011-MILCOM 2011 Military Communications Conference, Baltimore, MD, USA, 7–10 November 2011; pp. 1321–1326. [Google Scholar]
- Lee, H.C.J.; Thing, V.L.L. Port hopping for resilient networks. In Proceedings of the IEEE 60th Vehicular Technology Conference, Los Angeles, CA, USA, 26–29 September 2004; Volume 5, pp. 3291–3295. [Google Scholar]
- Kong, Y.; Zhang, L.; Wang, Z. Address hopping proactive defense model in IPv6 based on sliding time window. J. Comput. Appl. 2018, 38, 1936. [Google Scholar]
- Ma, Z.; Huang, X.; Yan, S.; Zhang, P. IPv6 dynamic address tunnel model based on the sliding address window. Telecommun. Sci. 2015, 31, 74. [Google Scholar]
- Chang, Z.; Lei, L.; Zhou, Z.; Mao, S.; Ristaniemi, T. Learn to Cache: Machine Learning for Network Edge Caching in the Big Data Era. IEEE Wirel. Commun. 2018, 25, 28–35. [Google Scholar] [CrossRef]
- Psaras, I.; Chai, W.K.; Pavlou, G. In-Network Cache Management and Resource Allocation for Information-Centric Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2920–2931. [Google Scholar] [CrossRef] [Green Version]
- Blot, J.C. End-to-end packet delay and loss behavior in the Internet. In Proceedings of the SIGCOMM ‘93: Conference proceedings on Communications architectures, Protocols and Applications, San Francisco, CA, USA, 13–17 September 1993. [Google Scholar]
- Mogul, J. Observing TCP dynamicsin real networks. ACM SIGCOMM Comput. Commun. Rev. 1992, 22, 305–317. [Google Scholar] [CrossRef]
- Zhang, L.; Shenker, S.; Clark, D.D. Observationsonthe dynamicsof a congestioncontrol algorithm: The effects of 2-way traffic. ACM SIGCOMM Comput. Commun. Rev. 1991, 21, 133–147. [Google Scholar] [CrossRef]
- Sanghi, D.; Agrawala, A.K.; Jain, B. Experimental assessment of end-to-end behavior on Internet. In Proceedings of the IEEE INFOCOM ‘93 The Conference on Computer Communications, San Fransisco, CA, USA, 28 March–1 April 1993; pp. 867–874. [Google Scholar]
- Paxson, V. End-to-end routing behavior in the Internet. IEEE/ACM Trans. Netw. 1997, 5, 601–615. [Google Scholar] [CrossRef]
- Katz-Bassett, E.; Madhyastha, H.V.; Adhikari, V.K.; Scott, C. Reverse traceroute. In Proceedings of the NSDI, San Jose, CA, USA, 28–30 April 2010. [Google Scholar]
- Tsang, Y.; Coates, M.; Nowak, R.D. Network delay tomography. IEEE Trans. Signal Process. 2003, 51, 2125–2136. [Google Scholar] [CrossRef]
- Nistor, M.; Lucani, D.E.; Vinhoza, T.T.V.; Costa, R.A.; Barros, J. On the Delay Distribution of Random Linear Network Coding. IEEE J. Sel. Areas Commun. 2011, 29, 1084–1093. [Google Scholar] [CrossRef]
Method | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 |
---|---|---|---|---|---|
Ours | 0.3 | 0.35 | 0.5 | 0.6 | 0.8 |
ODRT [14] | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
FDTT [15] | 0.8 | 0.9 | 1.1 | 1.2 | 1.4 |
FDTT [16] | 0.9 | 1.2 | 1.4 | 1.6 | 1.7 |
Device Name | Device Type | Hardware Parameter | Network Interface | |
---|---|---|---|---|
1 | Cloud computing and cloud storage | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*5 | 2* Gigabit Ethernet port |
2 | Cloud computing and cloud storage | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*5 | 2* Gigabit Ethernet port |
3 | Cloud computing and cloud storage | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*5 | 2* Gigabit Ethernet port |
4 | Management platform | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*3 | 2* Gigabit Ethernet port |
5 | Network hopping controller | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*3 | 2* Gigabit Ethernet port |
6 | Service hopping controller | server (Think-station) | CPU: E5-2609; memory: 16G; harddisk: 500G*3 | 2* Gigabit Ethernet port |
7 | Service hopping agent | server (FitServer) | CPU: E5-2609; memory: 16G; harddisk: 500G*2 | 2* Gigabit Ethernet port |
8 | Address hopping devices | server (FitServer) | CPU: E5-2609; memory: 16G; harddisk: 500G*2 | 2* Gigabit Ethernet port |
11 | Control plane connection | Switche S3026 | 24-port 2-Layer switch | 2* Gigabit Ethernet port |
12 | Control plane connection | Switche S5700 (Li) | 24-port 2-Layer switch | 2* Gigabit Ethernet port |
13 | Cloud computing and cloud storage connection | Switche S5700 (Li) | 24-port 2-Layer switch | 2* Gigabit Ethernet port |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Xu, Z. Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network. Entropy 2023, 25, 116. https://doi.org/10.3390/e25010116
Fang Z, Xu Z. Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network. Entropy. 2023; 25(1):116. https://doi.org/10.3390/e25010116
Chicago/Turabian StyleFang, Zhu, and Zhengquan Xu. 2023. "Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network" Entropy 25, no. 1: 116. https://doi.org/10.3390/e25010116
APA StyleFang, Z., & Xu, Z. (2023). Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network. Entropy, 25(1), 116. https://doi.org/10.3390/e25010116