On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
Abstract
:1. Introduction
2. Linear Hamiltonian Systems and the CP Equations
- and are at least twice continuously differentiable. Moreover, both W and H are Hermitian matrices, i.e., for all , and for all .
- For all , the operator is a self-adjoint extension of the differential operator defined asHere, denotes the space of all locally absolutely continuous functions and
- For all , is an eigenvalue of , and is the associated normalized eigenfunction; that is,
- Let be a differentiable matrix function, and with be such that , , and fulfill the deformation equation
- (i)
- The differential expression
- (ii)
- is a simple real eigenvalue of , and is an isolated eigenvalue in the spectrum of with algebraic multiplicity one.
3. Perturbative Expansions of the Eigenvalues
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrasekhar, S. The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A 1976, 349, 571. [Google Scholar]
- Page, D.N. Dirac equation around a charged, rotating black hole. Phys. Rev. D 1976, 14, 1509. [Google Scholar] [CrossRef]
- Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T. The Long-Time Dynamics of Dirac Particles in the Kerr–Newman Black Hole Geometry. Adv. Theor. Math. Phys. 2003, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Batic, D.; Schmid, H. The Dirac Propagator in the Kerr–Newman Metric. Prog. Theor. Phys. 2006, 116, 517. [Google Scholar] [CrossRef] [Green Version]
- Batic, D. Scattering for massive Dirac fields on the Kerr metric. J. Math. Phys. 2007, 48, 022502. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, B.; Chakrabarti, S.K. Dirac equation in Kerr geometry and its solution. Nuovo Cimento B 2000, 115, 885. [Google Scholar]
- Mukhopadhyay, B.; Chakrabarti, S.K. Solution of Dirac equation around a spinning Black Hole. Nucl. Phys. B 2000, 582, 627. [Google Scholar] [CrossRef] [Green Version]
- Winklmeier, M.; Yamada, O. A spectral approach to the Dirac equation in the non-extreme Kerr–Newmann metric. J. Phys. A Math. Theor. 2009, 42, 295204. [Google Scholar] [CrossRef]
- Casals, M.; Dolan, S.; Nolan, B.C.; Ottewill, A.C.; Winstanley, E. Kermions: Quantization of fermions on Kerr space-time. Phys. Rev. D 2013, 87, 064027. [Google Scholar] [CrossRef] [Green Version]
- Dolan, S.; Dempsey, D. Bound states of the Dirac equation on Kerr spacetime. Class. Quant. Grav. 2015, 32, 184001. [Google Scholar] [CrossRef]
- Dariescu, C.; Dariescu, M.-A.; Stelea, C. Dirac Equation on the Kerr–Newman Spacetime and Heun Functions. Adv. High Energy Phys. 2021, 2021, 5512735. [Google Scholar] [CrossRef]
- Suffern, K.G.; Fackerell, E.D.; Cosgrove, C.M. Eigenvalues of the Chandrasekhar-Page angular functions. J. Math. Phys. 1983, 24, 1350. [Google Scholar] [CrossRef]
- Kalnins, E.G.; Miller, W., Jr. Series solutions for the Dirac equation in Kerr–Newman space-time. J. Math. Phys. 1992, 33, 286. [Google Scholar] [CrossRef] [Green Version]
- Batic, D.; Schmid, H.; Winklmeier, M. On the eigenvalues of the Chandrasekhar–Page angular equation. J. Math. Phys. 2005, 46, 012504. [Google Scholar] [CrossRef] [Green Version]
- Winklmeier, M. A variational principle for block operator matrices and its application to the angular part of the Dirac operator in curved spacetime. J. Differ. Equ. 2008, 245, 2145. [Google Scholar] [CrossRef] [Green Version]
- Dolan, S.; Gair, J. The massive Dirac field on a rotating black hole spacetime: Angular solutions. Class. Quant. Grav. 2009, 26, 175020. [Google Scholar] [CrossRef]
- Berti, E.; Cardoso, V.; Casals, M. Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D 2006, 73, 024013, Erratum in Ibid. D 2006, 73, 109902. [Google Scholar] [CrossRef] [Green Version]
- Neznamov, V.P.; Safronov, I.I. The effective method to calculate eigenvalues of Chandrasekhar-Page angular equations. Int. J. Mod. Phys. D 2016, 25, 1650091. [Google Scholar] [CrossRef] [Green Version]
- Ansorg, M.; Kleinwächter, A.; Meinel, R. Relativistic Dyson Rings and Their Black Hole Limit. Astrophys. J. 2003, 582, L87. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.-Y. Toroidal figures of equilibrium. Astrophys. J. 1974, 190, 675. [Google Scholar] [CrossRef]
- Eriguchi, Y.; Sugimoto, D. Another Equilibrium Sequence of Self-Gravitating and Rotating Incompressible Fluid. Prog. Theor. Phys. 1981, 65, 1870. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.S. Black Holes and Relativistic Stars; The University of Chicago Press: Chicago, IL, USA; London, UK, 1998. [Google Scholar]
- Meinel, R. Quasistationary collapse to the extreme Kerr black hole. Ann. Phys. 2004, 13, 600. [Google Scholar] [CrossRef]
- Meinel, R. On the black hole limit of rotating fluid bodies in equilibrium. Class. Quantum Grav. 2006, 23, 1359. [Google Scholar] [CrossRef]
- Schmid, H. Bound State Solutions of the Dirac Equation in the extreme Kerr Geometry. Math. Nach. 2004, 117, 274. [Google Scholar] [CrossRef] [Green Version]
- Batic, D.; Schmid, H. The Dirac propagator in the extreme Kerr metric. J. Phys. A Math. Theor. 2007, 40, 13443. [Google Scholar] [CrossRef] [Green Version]
- Batic, D.; Nowakowski, M. On the bound states of the Dirac equation in the extreme Kerr metric. Class. Quant. Grav. 2008, 25, 225022. [Google Scholar] [CrossRef] [Green Version]
- Neznamov, V.P.; Shemarulin, V.E. Analysis of Half-Spin Particle Motion in Kerr–Newman Field by Means of Effective Potentials in Second-Order Equations. Gravit. Cosmol. 2018, 24, 129. [Google Scholar] [CrossRef] [Green Version]
- Schmid, H. On the deformation of linear Hamiltonian systems. J. Math. Anal. 2021, 499, 125051. [Google Scholar] [CrossRef]
- Casals, M.; Dolan, S.R.; Kanti, P.; Winstanley, E. Brane Decay of a (4 + n)-Dimensional Rotating Black Hole. III: Spin-1/2 particles. J. High Energy Phys. 2007, 703, 19. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Penrose, R.; Rindler, W. Spinors and Space-Time; Cambridge University Press: Cambridge, MA, USA, 1986; Volume 1. [Google Scholar]
- Kinnersley, W. Type D vacuum metrics. J. Math. Phys. 1969, 10, 1195. [Google Scholar] [CrossRef]
- Carter, B. Gravitation in Astrophysics; NATO ASI Series B; Carter, B., Hartle, J.B., Eds.; Plenum Press: New York, NY, USA; London, UK, 1987; Volume 156, pp. 114–117. [Google Scholar]
- Pinchover, Y.; Rubinstein, J. An Introduction to Partial Differential Equations; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batic, D.; Karim, S.H.A.; Nowakowski, M. On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric. Entropy 2022, 24, 1083. https://doi.org/10.3390/e24081083
Batic D, Karim SHA, Nowakowski M. On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric. Entropy. 2022; 24(8):1083. https://doi.org/10.3390/e24081083
Chicago/Turabian StyleBatic, Davide, Suzan Hamad Abdul Karim, and Marek Nowakowski. 2022. "On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric" Entropy 24, no. 8: 1083. https://doi.org/10.3390/e24081083
APA StyleBatic, D., Karim, S. H. A., & Nowakowski, M. (2022). On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric. Entropy, 24(8), 1083. https://doi.org/10.3390/e24081083