On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order
Abstract
:1. Introduction
- We generalize and extend the existing quadratic integral equation of Urysohn type to the fractional variable order in the form of a piece-wise constant function;
- Efficient existence and uniqueness criteria for the extended model are proposed;
- The obtained fundamental results are applied in the study of the Ulam–Hyers stability of the solution;
- An example is elaborated to demonstrate our results.
2. Preliminaries
- (a)
- for ;
- (b)
- The variable order fractional integral exists at any point on J for
3. Main Existence and Uniqueness Results
- (A1)
- For there exists a partition of the interval J defined as
- (A2)
- There exists such that
- (A3)
- There exist non-negative constants and such that
- (A4)
- The function is continuous on and nondecreasing with respect to its three variables, separately, and there exist constants , such that
- (A5)
- There exist a constant and continuous nondecreasing functions and such that for each and we have
4. Ulam–Hyers Stability
5. An Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, T.A. Volterra Integral and Differential Equations, 1st ed.; Academic Press: New York, NY, USA, 1983; ISBN 9780080956732. [Google Scholar]
- Busbridge, L.W. The Mathematics of Radiative Transfer, 1st ed.; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Case, K.M.; Zweifel, P.F. Linear Transport Theory, 1st ed.; Addison-Wesley: Reading, MA, USA, 1967. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer, 1st ed.; Oxford University Press: London, UK, 1950; ISBN 0486605906. [Google Scholar]
- Corduneanu, C. Integral Equations and Applications, 1st ed.; Cambridge University Press: New York, NY, USA, 2008; ISBN 978-0521091909. [Google Scholar]
- Ahmad, S.; Stamova, I.M. (Eds.) Lotka–Volterra and Related Systems: Recent Developments in Population Dynamics, 1st ed.; Walter de Gruyter: Berlin, Germany, 2013; ISBN 978-3-11-026951-2. [Google Scholar]
- May, R.M. Theoretical Ecology. Principles and Applications, 1st ed.; Saunders: Philadelphia, PA, USA, 1976; ISBN 0721662056/978-0721662053. [Google Scholar]
- Takeuchi, Y. Global Dynamical Properties of Lotka–Volterra Systems, 1st ed.; World Scientific: Singapore, 1996; ISBN 9810224710/9789810224714. [Google Scholar]
- Zabreyko, P.P.; Koshelev, A.Z.; Krasnoselskii, M.A.; Mikhlin, S.G.; Rakovshchik, L.S.; Yu, V. Integral Equations, a Reference Text, 1st ed.; Noordhoff: Leyden, The Netherlands, 1975; ISBN 978-94-010-1911-8. [Google Scholar]
- Debbouche, A.; Baleanu, D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 2011, 62, 1442–1450. [Google Scholar] [CrossRef] [Green Version]
- Lakshmikantham, V.; Devi, J.V. Theory of fractional differential equations in a Banach space. Eur. J. Pure Appl. Math. 2008, 1, 38–45. [Google Scholar]
- Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications, 1st ed.; CRC Press: Amsterdam, The Netherlands, 1993; ISBN 978-2881248641. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. On a fractional generalization of free electron laser equation. Appl. Math. Comput. 2003, 143, 89–97. [Google Scholar] [CrossRef]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Boca Raton, FL, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Talebi, S.P.; Werner, S.; Li, S.; Mandic, D.P. Tracking Dynamic systems in α-stable environments. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, S. Fractal analysis and control of the fractional Lotka–Volterra model. Nonlinear Dynam. 2019, 95, 1457–1470. [Google Scholar] [CrossRef]
- Lopes, A.M.; Tenreiro Machado, J.A. A review of fractional order entropies. Entropy 2020, 22, 1374. [Google Scholar] [CrossRef] [PubMed]
- Baez, J.C.; Pollard, B.S. Relative entropy in biological systems. Entropy 2016, 18, 46. [Google Scholar] [CrossRef]
- Rachdi, M.; Waku, D.; Hazgui, H.; Demongeot, J. Entropy as a robustness marker in genetic regulatory networks. Entropy 2020, 22, 260. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, A.; Song, J.S. Maximum entropy methods for extracting the learned features of deep neural networks. PLoS Comput. Biol. 2017, 13, e1005836. [Google Scholar] [CrossRef]
- Hattaf, K.; Mohsen, A.A.; Al-Husseiny, H.F. Gronwall inequality and existence of solutions for differential equations with generalized Hattaf fractional derivative. J. Math. Comput. Sci. 2022, 27, 18–27. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Baleanu, D.; Souid, M.S.; Hakem, A.; Inc, M. Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 365, 1–19. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Chandok, S.; Hakem, A. Existence and stability of a Caputo variable-order boundary value problem. J. Math. 2021, 2021, 7967880. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Karapinar, E.; Hakem, A. On the boundary value problems of Hadamard fractional differential equations of variable order. Math. Meth. Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Sitthithakerngkiet, K.; Hakem, A. Implicit nonlinear fractional differential equations of variable order. Bound. Value Probl. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Samko, S.G.; Boss, B. Integration and differentiation to a variable fractional order. Integr. Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Valerio, D.; Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 2006; ISBN 0444518320/9780444518323. [Google Scholar]
- Zhang, S. Existence of solutions for two point boundary value problems with singular differential equations of variable order. Electr. J. Differ. Equ. 2013, 245, 1–16. [Google Scholar]
- Zhang, S.; Hu, L. Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. Mathematics 2019, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Sun, S.; Hu, L. Approximate solutions to initial value problem for differential equation of variable order. J. Fract. Calc. Appl. 2018, 9, 93–112. [Google Scholar]
- Zhang, S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkerrouche, A.; Souid, M.S.; Stamov, G.; Stamova, I. On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order. Entropy 2022, 24, 886. https://doi.org/10.3390/e24070886
Benkerrouche A, Souid MS, Stamov G, Stamova I. On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order. Entropy. 2022; 24(7):886. https://doi.org/10.3390/e24070886
Chicago/Turabian StyleBenkerrouche, Amar, Mohammed Said Souid, Gani Stamov, and Ivanka Stamova. 2022. "On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order" Entropy 24, no. 7: 886. https://doi.org/10.3390/e24070886
APA StyleBenkerrouche, A., Souid, M. S., Stamov, G., & Stamova, I. (2022). On the Solutions of a Quadratic Integral Equation of the Urysohn Type of Fractional Variable Order. Entropy, 24(7), 886. https://doi.org/10.3390/e24070886