# A Fisher Information-Based Incompatibility Criterion for Quantum Channels

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Classical and Quantum Fisher Information

## 3. Compatibility of Quantum Channels

- complete positivity: for any dimension $k\ge 1$, the linear map ${\mathrm{id}}_{k}\otimes \Phi :\mathcal{L}({\mathbb{C}}^{k}\otimes {H}_{d})\to \mathcal{L}({\mathbb{C}}^{k}\otimes {H}_{D})$ is a positive operator;
- trace-preservation: for all operators $X\in \mathcal{L}\left({H}_{d}\right)$, $Tr\Phi \left(X\right)=TrX$.

**Definition**

**1.**

**Definition**

**2.**

**Φ**as

**Proposition**

**1.**

## 4. Channel Incompatibility via POVM Incompatibility

- positivity: the operators ${A}_{1},\dots ,{A}_{k}\in \mathcal{L}\left({H}_{d}\right)$ are positive semidefinite;
- normalization: ${\sum}_{i=1}^{k}{A}_{i}={I}_{d}$.

**Definition**

**3.**

**Proposition**

**2.**

**Remark**

**1.**

**Remark**

**2.**

**Lemma**

**1.**

**Proof.**

**Conjecture**

**1.**

**Theorem**

**1.**

**Proof.**

**Remark**

**3.**

- channel compatibility: the joint channel has a Choi matrix of size ${d}^{N+1}$
- incompatibility criterion from Theorem 1: the variable H has size ${d}^{2}$.

**Proposition**

**3.**

**Proof.**

**Lemma**

**2.**

**Lemma**

**3.**

## 5. Incompatibility of Two Schur Channels

**Lemma**

**4.**

**Proof.**

**Lemma**

**5.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Remark**

**4.**

## 6. Channel Assemblages

**Definition**

**4.**

**Φ**is called:

- $(N,K)$-compatible if all K-subsets of
**Φ**are compatible. - $(N,K)$-incompatible if at least one K-subset of
**Φ**is incompatible. - $(N,K)$-strong incompatible if all K-subsets of
**Φ**are incompatible. - $(N,K+1)$-genuinely incompatible if it is $(N,K)$-compatible and $(N,K+1)$-incompatible.
- $(N,K+1)$-genuinely strong incompatible if it is $(N,K)$-compatible and $(N,K+1)$-strong incompatible.

**Theorem**

**3.**

**Φ**is $(N,K)$-incompatible. Moreover, if for all K-subsets $S\subseteq \left[N\right]$, there exists a K-tuple of bases ${\mathbf{e}}_{S}$ such that $\mathrm{val}(\mathsf{\Phi},S,{\mathbf{e}}_{S})>d$, the assemblage Φ is $(N,K)$-strong incompatible.

## 7. Assemblages of Depolarizing Channels

**Proposition**

**4.**

**Proof.**

**Corollary**

**1.**

**Corollary**

**2.**

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Für Phys.
**1927**, 43, 172–198. [Google Scholar] [CrossRef] - Bohr, N. The quantum postulate and the recent development of atomic theory. Nature
**1928**, 121, 580–590. [Google Scholar] [CrossRef] [Green Version] - Dieks, D. Communication by EPR devices. Phys. Lett. A
**1982**, 92, 271–272. [Google Scholar] [CrossRef] [Green Version] - Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature
**1982**, 299, 802–803. [Google Scholar] [CrossRef] - Vidal, G.; Tarrach, R. Robustness of entanglement. Phys. Rev. A
**1999**, 59, 141–155. [Google Scholar] [CrossRef] [Green Version] - Steiner, M. Generalized robustness of entanglement. Phys. Rev. A
**2003**, 67, 054305. [Google Scholar] [CrossRef] [Green Version] - Uola, R.; Budroni, C.; Gühne, O.; Pellonpää, J.P. One-to-One Mapping between Steering and Joint Measurability Problems. Phys. Rev. Lett.
**2015**, 115, 230402. [Google Scholar] [CrossRef] [Green Version] - Uola, R.; Kraft, T.; Shang, J.; Yu, X.D.; Gühne, O. Quantifying Quantum Resources with Conic Programming. Phys. Rev. Lett.
**2019**, 122, 130404. [Google Scholar] [CrossRef] [Green Version] - Designolle, S.; Farkas, M.; Kaniewski, J. Incompatibility robustness of quantum measurements: A unified framework. New J. Phys.
**2019**, 21, 113053. [Google Scholar] [CrossRef] - Wolf, M.M.; Perez-Garcia, D.; Fernandez, C. Measurements Incompatible in Quantum Theory Cannot Be Measured Jointly in Any Other No-Signaling Theory. Phys. Rev. Lett.
**2009**, 103, 230402. [Google Scholar] [CrossRef] [Green Version] - Bene, E.; Vértesi, T. Measurement incompatibility does not give rise to Bell violation in general. New J. Phys.
**2018**, 20, 013021. [Google Scholar] [CrossRef] - Quintino, M.T.; Vértesi, T.; Brunner, N. Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Phys. Rev. Lett.
**2014**, 113, 160402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Carmeli, C.; Heinosaari, T.; Toigo, A. Quantum Incompatibility Witnesses. Phys. Rev. Lett.
**2019**, 122, 130402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Skrzypczyk, P.; Šupić, I.; Cavalcanti, D. All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. Phys. Rev. Lett.
**2019**, 122, 130403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mori, J. Operational characterization of incompatibility of quantum channels with quantum state discrimination. Phys. Rev. A
**2020**, 101, 032331. [Google Scholar] [CrossRef] [Green Version] - Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys.
**2019**, 91, 025001. [Google Scholar] [CrossRef] [Green Version] - Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys.
**2014**, 86, 419–478. [Google Scholar] [CrossRef] [Green Version] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Busch, P.; Grabowski, M.; Lahti, P.J. Operational Quantum Physics; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Heinosaari, T.; Miyadera, T.; Ziman, M. An invitation to quantum incompatibility. J. Phys. Math. Theor.
**2016**, 49, 123001. [Google Scholar] [CrossRef] - Heinosaari, T.; Miyadera, T. Incompatibility of quantum channels. J. Phys. Math. Theor.
**2017**, 50, 135302. [Google Scholar] [CrossRef] [Green Version] - Kuramochi, Y. Quantum incompatibility of channels with general outcome operator algebras. J. Math. Phys.
**2018**, 59, 042203. [Google Scholar] [CrossRef] [Green Version] - Carmeli, C.; Heinosaari, T.; Miyadera, T.; Toigo, A. Witnessing incompatibility of quantum channels. J. Math. Phys.
**2019**, 60, 122202. [Google Scholar] [CrossRef] [Green Version] - Heinosaari, T.; Kiukas, J.; Reitzner, D.; Schultz, J. Incompatibility breaking quantum channels. J. Phys. Math. Theor.
**2015**, 48, 435301. [Google Scholar] [CrossRef] [Green Version] - Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Girard, M.; Plávala, M.; Sikora, J. Jordan products of quantum channels and their compatibility. Nat. Commun.
**2021**, 12, 2129. [Google Scholar] [CrossRef] [PubMed] - Zhu, H. Information complementarity: A new paradigm for decoding quantum incompatibility. Sci. Rep.
**2015**, 5, 14317. [Google Scholar] [CrossRef] [Green Version] - Zhu, H.; Hayashi, M.; Chen, L. Universal steering criteria. Phys. Rev. Lett.
**2016**, 116, 070403. [Google Scholar] [CrossRef] [Green Version] - Rao, C.R. Information and the Accuracy Attainable in the Estimation of Statistical Parameters; Springer: New York, NY, USA, 1992; pp. 235–247. [Google Scholar] [CrossRef]
- Cramér, H. Mathematical Methods of Statistics (PMS-9); Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Amari, S.i. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics; Springer: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Nielsen, F. An elementary introduction to information geometry. Entropy
**2020**, 22, 1100. [Google Scholar] [CrossRef] - Frieden, B.R. Physics from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation. Math. Proc. Camb. Philos. Soc.
**1925**, 22, 700–725. [Google Scholar] [CrossRef] [Green Version] - Yuen, H.; Lax, M. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory
**1973**, 19, 740–750. [Google Scholar] [CrossRef] - Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett.
**1994**, 72, 3439–3443. [Google Scholar] [CrossRef] - Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; Springer: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Gill, R.D.; Massar, S. State estimation for large ensembles. Phys. Rev. A
**2000**, 61, 042312. [Google Scholar] [CrossRef] [Green Version] - Werner, R.F. Optimal cloning of pure states. Phys. Rev. A
**1998**, 58, 1827–1832. [Google Scholar] [CrossRef] [Green Version] - Hashagen, A.L. Universal asymmetric quantum cloning revisited. Quantum Inf. Comput.
**2017**, 17, 747–778. [Google Scholar] [CrossRef] - Haapasalo, E. Compatibility of Covariant Quantum Channels with Emphasis on Weyl Symmetry. Ann. Henri Poincaré
**2019**, 20, 3163. [Google Scholar] [CrossRef] [Green Version] - Nechita, I.; Pellegrini, C.; Rochette, D. A geometrical description of the universal 1→2 asymmetric quantum cloning region. Quantum Inf. Process.
**2021**, 20, 333. [Google Scholar] [CrossRef] - Haapasalo, E. Robustness of incompatibility for quantum devices. J. Phys. A Math. Theor.
**2015**, 48, 255303. [Google Scholar] [CrossRef] [Green Version] - Bluhm, A.; Nechita, I. Joint measurability of quantum effects and the matrix diamond. J. Math. Phys.
**2018**, 59, 112202. [Google Scholar] [CrossRef] [Green Version] - Bluhm, A.; Nechita, I. Compatibility of quantum measurements and inclusion constants for the matrix jewel. SIAM J. Appl. Algebra Geom.
**2020**, 4, 255–296. [Google Scholar] [CrossRef] - Ali, S.T.; Carmeli, C.; Heinosaari, T.; Toigo, A. Commutative POVMs and Fuzzy Observables. Found. Phys.
**2009**, 39, 593. [Google Scholar] [CrossRef] [Green Version] - Gühne, O.; Haapasalo, E.; Kraft, T.; Pellonpää, J.P.; Uola, R. Incompatible measurements in quantum information science. arXiv
**2021**, arXiv:2112.06784. [Google Scholar] - Heinosaari, T.; Jivulescu, M.A.; Nechita, I. Order preserving maps on quantum measurements. arXiv
**2022**, arXiv:2202.00725. [Google Scholar] - Paulsen, V. Completely Bounded Maps and Operator Algebras; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.J.; Levene, R.H.; Paulsen, V.I.; Plosker, S.; Rahaman, M. Schur multipliers and mixed unitary maps. J. Math. Phys.
**2018**, 59, 112201. [Google Scholar] [CrossRef] [Green Version] - Watrous, J. The Theory of Quantum Information; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Nechita, I. Diagonal unitary and orthogonal symmetries in quantum theory. Quantum
**2021**, 5, 519. [Google Scholar] [CrossRef] - Liang, Y.C.; Spekkens, R.W.; Wiseman, H.M. Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Phys. Rep.
**2011**, 506, 1–39. [Google Scholar] [CrossRef] [Green Version] - Kunjwal, R.; Heunen, C.; Fritz, T. Quantum realization of arbitrary joint measurability structures. Phys. Rev. A
**2014**, 89, 052126. [Google Scholar] [CrossRef] [Green Version] - Yadavalli, S.A.; Andrejic, N.; Kunjwal, R. Bell violations from arbitrary joint measurability structures. arXiv
**2020**, arXiv:2008.10100. [Google Scholar] - Sun, B.Z.; Wang, Z.X.; Li-Jost, X.; Fei, S.M. A note on the hierarchy of quantum measurement incompatibilities. Entropy
**2020**, 22, 161. [Google Scholar] [CrossRef] [Green Version] - Durt, T.; Englert, B.G.; Bengtsson, I.; Życzkowski, K. On mutually unbiased bases. Int. J. Quantum Inf.
**2010**, 8, 535–640. [Google Scholar] [CrossRef] - Wootters, W.K.; Fields, B.D. Optimal state-determination by mutually unbiased measurements. Ann. Phys.
**1989**, 191, 363–381. [Google Scholar] [CrossRef] - Klappenecker, A.; Rötteler, M. Constructions of mutually unbiased bases. In International Conference on Finite Fields and Applications; Springer: Berlin/Heidelberg, Germany, 2003; pp. 137–144. [Google Scholar]
- Combescure, M. The mutually unbiased bases revisited. Contemp. Math.
**2007**, 447, 29. [Google Scholar]

**Figure 1.**The Fisher information-based incompatibility criterion for Schur channels. In the left panel, we consider two noisy copies of the Schur channel corresponding to $B=\left[\begin{array}{cc}1& 1/2\\ 1/2& 1\end{array}\right]$. In the right panel, we consider noisy versions of ${\Sigma}_{B}$ and ${\Sigma}_{C}$, where $C=\left[\begin{array}{cc}1& \sqrt{3/4}\\ \sqrt{3/4}& 1\end{array}\right]$. Shaded regions correspond to the conditions from (16), while the red dots correspond to the maximally compatible channels in the respective directions.

**Figure 2.**Comparing the incompatibility criterion from Proposition 4 (filled region) with the incompatibility thresholds from Equation (5) (dashed curves) for different values of d: $d=2$ (red curve), $d=5$ (brown curve), $d=20$ (black curve).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Q.-H.; Nechita, I.
A Fisher Information-Based Incompatibility Criterion for Quantum Channels. *Entropy* **2022**, *24*, 805.
https://doi.org/10.3390/e24060805

**AMA Style**

Zhang Q-H, Nechita I.
A Fisher Information-Based Incompatibility Criterion for Quantum Channels. *Entropy*. 2022; 24(6):805.
https://doi.org/10.3390/e24060805

**Chicago/Turabian Style**

Zhang, Qing-Hua, and Ion Nechita.
2022. "A Fisher Information-Based Incompatibility Criterion for Quantum Channels" *Entropy* 24, no. 6: 805.
https://doi.org/10.3390/e24060805