# Rényi Entropy and Free Energy

## Abstract

**:**

## 1. Introduction

## 2. Rényi Entropy as a $\mathit{q}$-Derivative of Free Energy

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Rényi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability 1960, Berkeley, CA, USA, 20 June–30 July 1960; Neyman, J., Ed.; UC Press: Berkeley, CA, USA, 1906; Volume 1, pp. 547–561. [Google Scholar]
- Dahlsten, O.; Renner, R.; Rieper, E.; Vedral, V. On the work value of information. New J. Phys.
**2011**, 13, 053015. Available online: http://arxiv.org/abs/0908.0424 (accessed on 15 May 2022). [CrossRef] - del Rio, L.; Aberg, J.; Renner, R.; Dahlsten, O.; Vedral, V. The thermodynamic meaning of negative entropy. Nature
**2011**, 474, 61–63. Available online: http://arxiv.org/abs/1009.1630 (accessed on 15 May 2022). [PubMed][Green Version] - Harremöes, P. Interpretations of Renyi entropies and divergences. Phys. A Stat. Mech. Appl.
**2006**, 365, 57–62. Available online: http://arxiv.org/abs/math-ph/0510002 (accessed on 15 May 2022). [CrossRef][Green Version] - König, R.; Renner, R.; Schaffner, C. The operational meaning of min- and max-entropy. IEEE Trans. Info. Theory
**2009**, 55, 4337–4347. Available online: http://arxiv.org/abs/0807.1338 (accessed on 15 May 2022). [CrossRef][Green Version] - Uffink, J. Can the maximum entropy principle be explained as a consistency requirement? Sec. 6: Justification by consistency: Shore and Johnson. Stud. Hist. Phil. Sci.
**1995**, B26, 223–261. [Google Scholar] - Baez, J.C. Rényi Entropy and Free Energy. Azimuth. Available online: http://johncarlosbaez.wordpress.com/2011/02/10/rnyi-entropy-and-free-energy/ (accessed on 10 February 2011).
- Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems; Cambridge U. Press: Cambridge, UK, 1995. [Google Scholar]
- Erdogmuns, D.; Xu, D. Rényi’s entropy, divergence and their nonparametric estimators. In Information Theoretic Learning: Rényi’s Entropy and Kernel Perspectives; Principe, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–102. [Google Scholar]
- Baez, J.C. Rényi Entropy and Free Energy. 2011. Available online: https://arxiv.org/abs/1102.2098v3 (accessed on 15 March 2022).
- Polettini, M. Rényi Entropy and Free Energy. Matteoeo. 10 February 2011. Available online: https://web.archive.org/web/20120124091413/http://tomate.blogsome.com/2011/02/10/renyi-entropy-and-free-energy/ (accessed on 15 March 2022).
- Downes, E. Comment on Rényi Entropy and Free Energy. Azimuth. Available online: http://johncarlosbaez.wordpress.com/2011/02/10/rnyi-entropy-and-free-energy/#comment-4065 (accessed on 15 May 2022).
- Abe, S. A Note on the q-deformation-theoretic Aspect of the Generalized Entropies in Nonextensive Physics. Phys. Lett. A
**1997**, 224, 326–330. [Google Scholar] [CrossRef] - van Dam, W.; Hayden, P. Rényi-Entropic Bounds on Quantum Communication, Sec. 4.1: Rényi Entropy. Available online: http://arxiv.org/abs/quant-ph/0204093 (accessed on 15 May 2022).
- Cheung, P.; Kac, V. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baez, J.C. Rényi Entropy and Free Energy. *Entropy* **2022**, *24*, 706.
https://doi.org/10.3390/e24050706

**AMA Style**

Baez JC. Rényi Entropy and Free Energy. *Entropy*. 2022; 24(5):706.
https://doi.org/10.3390/e24050706

**Chicago/Turabian Style**

Baez, John C. 2022. "Rényi Entropy and Free Energy" *Entropy* 24, no. 5: 706.
https://doi.org/10.3390/e24050706