Charged Shear-Free Fluids and Complexity in First Integrals
Abstract
:1. Introduction
2. Charged Shear-Free Fluids
3. A First Integral
4. Integral Equations
5. Particular Solutions
- Case I—One order-four linear factor,
- Case II—One order-three linear factor,
- Case III—One order-two linear factor and one order-one quadratic factor,
- Case IV—One order-two linear factor and two order-one linear factors,
- Case V—Two order-two linear factors,
- Case VI—Four non-repeated linear factors,
- Case VII—One order-two quadratic factor,
- Case VIII—Two order-one quadratic factors, and
- Case IX—One order-one cubic factor.
5.1. Case I: One Order-Four Linear Factor
5.2. Case II: One Order-Three Linear Factor
5.3. Case III: One Order-Two Linear Factor and One Order-One Quadratic Factor
5.4. Case IV: One Order-Two Linear Factor and Two Order-One Linear Factors
5.5. Case V: Two Order-Two Linear Factors
5.6. Case VI: Four Non-Repeated Linear Factors
5.7. Case VII: One Order-Two Quadratic Factor
5.8. Cases VIII and IX
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Integration of (17)
Appendix B. Independence of the Result (15)
References
- Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case. Phys. Rev. D 2018, 97, 044010. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Butt, I.I. Complexity factor for charged spherical system. Eur. Phys. J. C 2018, 78, 688. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Complexity factor for static cylindrical system. Eur. Phys. J. C 2018, 78, 850. [Google Scholar] [CrossRef]
- Sharif, M.; Butt, I.I. Electromagnetic effects on complexity factor for static cylindrical system. Chin. J. Phys. C 2019, 61, 238. [Google Scholar] [CrossRef]
- Casadio, R.; Contreras, E.; Ovalle, J.; Sotomayor, A.; Stucklik, Z. Isotropization and change of complexity by gravitational decoupling. Eur. Phys. J. C 2019, 79, 826. [Google Scholar] [CrossRef]
- Sharif, M.; Tariq, S. Complexity factor for charged dissipative dynamical system. Mod. Phys. Lett. A 2020, 35, 2050231. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating fluid distributions. Phys. Rev. D 2018, 98, 104059. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Complexity factors for axially symmetric static sources. Phys. Rev. D 2019, 99, 044049. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor. Eur. Phys. J. C 2020, 80, 631. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Jasim, M.K.; Maurya, S.K.; Singh, K.N.; Nag, R. Anisotropic strange star in 5D Einstein-Gauss-Bonnet gravity. Entropy 2021, 23, 1015. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.K.; Govender, M.; Kaur, S.; Nag, R. Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling. Eur. Phys. J. C 2022, 82, 100. [Google Scholar] [CrossRef]
- Arias, C.; Contreras, E.; Fuenmayor, E.; Ramos, A. Anisotropic star models in the context of vanishing complexity. Ann. Phys. 2022, 436, 168671. [Google Scholar] [CrossRef]
- Maurya, S.K.; Nag, R. Role of gravitational decoupling on isotropization and complexity of self-gravitating system under complete geometric deformation approach. Eur. Phys. J. C 2022, 82, 48. [Google Scholar] [CrossRef]
- Sharif, M.; Majid, A.; Nasir, M. Complexity factor for self-gravitating system in modified Gauss-Bonnet gravity. Int. J. Mod. Phys. A 2019, 34, 19502010. [Google Scholar] [CrossRef]
- Abbas, G.; Nazar, H. Complexity factor for static anisotropic self-gravitating source in f(R) gravity. Eur. Phys. J. C 2018, 78, 510. [Google Scholar] [CrossRef]
- Zubair, M.; Azmat, H. Complexity analysis of cylindrically symmetric self-gravitating dynamical system in f(R,T) theory of gravity. Phys. Dark Universe 2020, 28, 100531. [Google Scholar] [CrossRef]
- Yousaf, Z. Definition of complexity factor for self-gravitating systems in Palatini f(R) gravity. Phys. Scr. 2020, 95, 075307. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Hassan, K. Complexity of self-gravitating fluid distributions in f(G,T) gravity. Eur. Phys. J. Plus 2020, 135, 397. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.Z.; Naseer, T. New definition of complexity factor in f(R,T,RμνTμν) gravity. Phys. Dark Universe 2020, 28, 100535. [Google Scholar] [CrossRef] [Green Version]
- Kweyama, M.C.; Maharaj, S.D.; Govinder, K.S. First integrals for charged perfect fluid distributions. Nonlinear Anal. Real World Appl. 2012, 13, 1721. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, B.V. Static charged perfect fluid spheres in general relativity. Phys. Rev. D 2002, 65, 104001. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, D.C. Exact solutions for shear-free motion of spherically symmetric charged perfect fluids in general relativity. Fortschr. Phys. 1992, 40, 31. [Google Scholar] [CrossRef]
- Sharma, R.; Mukherjee, S.; Maharaj, S.D. General solution for a class of static charged spheres. Gen. Relativ. Gravit. 2004, 33, 149. [Google Scholar] [CrossRef]
- Kustaanheimo, P.; Qvist, B. A note on some general solutions of the Einstein field equations in a spherically symmetric world. Comment. Phys. Math. Helsingf. 1948, 13, 1. [Google Scholar] [CrossRef]
- Srivastava, D.C. Exact solutions for shear-free motion of spherically symmetric perfect fluid distributions in general relativity. Class. Quantum Grav. 1987, 4, 1093. [Google Scholar] [CrossRef]
- Stephani, H. A new interior solution of Einstein field equations for a spherically symmetric perfect fluid in shear-free motion. J. Phys. A Math. Gen. 1983, 16, 3529. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions to Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Maharaj, S.D.; Leach, P.G.L.; Maartens, R. Expanding spherically symmetric models without shear. Gen. Relat. Gravit. 1996, 28, 35. [Google Scholar] [CrossRef] [Green Version]
- Krasinski, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sussman, R.A. On spherically symmetric shear-free perfect fluid configurations (neutral and charged). II. Equation of state and singularities. J. Math. Phys. 1988, 29, 945. [Google Scholar] [CrossRef]
- Sussman, R.A. On spherically symmetric shear-free perfect fluid configurations (neutral and charged). II. Global view. J. Math. Phys. 1988, 29, 1177. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. On the stability of the shear-free condition. Gen. Relat. Gravit. 2010, 42, 185. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ibanez, J. Role of electric charge and cosmological constant in structure scalars. Phy. Rev. D 2011, 84, 107501. [Google Scholar] [CrossRef] [Green Version]
- Noureen, I.; Zubair, M.; Bhatti, A.A.; Abbas, G. Shear-free condition and dynamical instability in f(R,T) gravity. Eur. Phys. J. C 2015, 75, 323. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Di Prisco, A.; Ospino, J. Cylindrically symmetric relativistic fluids: A study based on structure scalars. Gen. Relativ. Gravit. 2012, 44, 2645. [Google Scholar] [CrossRef]
- Pinheiro, G.; Chan, R. Radiating shear-free gravitational collapse with charge. Gen. Relativ. Gravit. 2012, 45, 243. [Google Scholar] [CrossRef]
- Herrera, L. Stability of the isotropic pressure condition. Phys. Rev. D 2020, 101, 104024. [Google Scholar] [CrossRef]
- Gumede, S.C.; Govinder, K.S.; Maharaj, S.D. First integrals of shear-free fluids and complexity. Entropy 2021, 23, 1539. [Google Scholar] [CrossRef]
- Wafo Soh, C.; Mahomed, F.M. Noether symmetries of y″=f(x)y2 with application to nonstatic spherically symmetric perfect fluid solutions. Class. Quantum Grav. 1999, 16, 3553. [Google Scholar]
- Wolfram, S. The Mathematica Book; Wolfram Media: Champaign, IL, USA, 2007. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integral, Series, and Products; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Lobahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. Maple Introductory Programming Guide; Maplesoft: Waterloo, ON, Canada, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumede, S.C.; Govinder, K.S.; Maharaj, S.D. Charged Shear-Free Fluids and Complexity in First Integrals. Entropy 2022, 24, 645. https://doi.org/10.3390/e24050645
Gumede SC, Govinder KS, Maharaj SD. Charged Shear-Free Fluids and Complexity in First Integrals. Entropy. 2022; 24(5):645. https://doi.org/10.3390/e24050645
Chicago/Turabian StyleGumede, Sfundo C., Keshlan S. Govinder, and Sunil D. Maharaj. 2022. "Charged Shear-Free Fluids and Complexity in First Integrals" Entropy 24, no. 5: 645. https://doi.org/10.3390/e24050645
APA StyleGumede, S. C., Govinder, K. S., & Maharaj, S. D. (2022). Charged Shear-Free Fluids and Complexity in First Integrals. Entropy, 24(5), 645. https://doi.org/10.3390/e24050645