Measuring Dynamics in Evacuation Behaviour with Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cellular Automaton Modeling Evacuation with Bounded Rationality
2.2. Data-Set Generation and Network Capacity
3. Results
3.1. Validating CNN Models
3.2. Extracting the Dynamical Parameter via Deep Learning
3.3. Robustness Examinations
3.4. Measuring Deviations from the Optimal Decision
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating Dynamical Features of Escape Panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, R.L. A Continuum Theory for the Flow of Pedestrians. Transp. Res. Part B Methodol. 2002, 36, 507–535. [Google Scholar] [CrossRef]
- Helbing, D.; Buzna, L.; Johansson, A.; Werner, T. Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions. Transp. Sci. 2005, 39, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pastor, J.M.; Garcimartín, A.; Gago, P.A.; Peralta, J.P.; Martín-Gómez, C.; Ferrer, L.M.; Maza, D.; Parisi, D.R.; Pugnaloni, L.A.; Zuriguel, I. Experimental Proof of Faster-Is-Slower in Systems of Frictional Particles Flowing through Constrictions. Phys. Rev. E 2015, 92, 062817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, A.; Ibáñez, S.; Kuperman, M.N.; Bouzat, S. A Counterintuitive Way to Speed up Pedestrian and Granular Bottleneck Flows Prone to Clogging: Can ‘more’ Escape Faster? J. Stat. Mech. 2018, 2018, 083403. [Google Scholar] [CrossRef] [Green Version]
- Wijermans, F.E.H. Understanding Crowd Behaviour: Simulating Situated Individuals; SOM Research School, University of Groningen: Groningen, The Netherlands, 2011. [Google Scholar]
- Vermuyten, H.; Beliën, J.; De Boeck, L.; Reniers, G.; Wauters, T. A Review of Optimisation Models for Pedestrian Evacuation and Design Problems. Saf. Sci. 2016, 87, 167–178. [Google Scholar] [CrossRef]
- Haghani, M.; Sarvi, M. ‘Rationality’ in Collective Escape Behaviour: Identifying Reference Points of Measurement at Micro and Macro Levels. J. Adv. Transp. 2019, 2019, 2380348. [Google Scholar] [CrossRef]
- Bain, N.; Bartolo, D. Dynamic Response and Hydrodynamics of Polarized Crowds. Science 2019, 363, 46–49. [Google Scholar] [CrossRef]
- Simon, H.A. Reason in Human Affairs; Stanford University Press: Stanford, CA, USA, 1983. [Google Scholar]
- Pan, Q.; Wang, L.; Shi, R.; Wang, H.; He, M. Spatial Modes of Cooperation Based on Bounded Rationality. Phys. A 2014, 415, 421–427. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y. Escape Dynamics Based on Bounded Rationality. Phys. A 2019, 531, 121777. [Google Scholar] [CrossRef] [Green Version]
- Noh, D.j.; Koo, J.; Kim, B.I. An Efficient Partially Dedicated Strategy for Evacuation of a Heterogeneous Population. Simul. Model. Pract. Theory 2016, 62, 157–165. [Google Scholar] [CrossRef]
- Dixon, D.S.; Mozumder, P.; Vásquez, W.F.; Gladwin, H. Heterogeneity Within and Across Households in Hurricane Evacuation Response. Netw. Spat. Econ. 2017, 17, 645–680. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J.; Zheng, Y.; Wei, J. A Heterogeneous Lattice Gas Model for Simulating Pedestrian Evacuation. Phys. A 2012, 391, 582–592. [Google Scholar] [CrossRef]
- Haghani, M.; Sarvi, M. Heterogeneity of Decision Strategy in Collective Escape of Human Crowds: On Identifying the Optimum Composition. Int. J. Disaster Risk Reduct. 2019, 35, 101064. [Google Scholar] [CrossRef]
- Liu, Q. The Effect of Dedicated Exit on the Evacuation of Heterogeneous Pedestrians. Phys. A Stat. Mech. Its Appl. 2018, 506, 305–323. [Google Scholar] [CrossRef]
- Petrolia, D.R.; Bhattacharjee, S.; Hanson, T.R. Heterogeneous Evacuation Responses to Storm Forecast Attributes. Nat. Hazards Rev. 2011, 12, 117–124. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Selten, R. Bounded Rationality: The Adaptive Toolbox; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Yang, X.; Yao, S. Walrasian Sequential Equilibrium, Bounded Rationality, and Social Experiments. Div. Labor Trans. Costs 2005, 1, 73–98. [Google Scholar] [CrossRef]
- Băbeanu, A.I.; Garlaschelli, D. Evidence for Mixed Rationalities in Preference Formation. Complexity 2018, 2018, 3615476. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Hui, P.M.; Wang, B.H.; Johnson, N.F. Effects of Announcing Global Information in a Two-Route Traffic Flow Model. J. Phys. Soc. Jpn. 2001, 70, 3507–3510. [Google Scholar] [CrossRef]
- Nowak, A.; Vallacher, R.R.; Zochowski, M. The Emergence of Personality: Dynamic Foundations of Individual Variation. Dev. Rev. 2005, 25, 351–385. [Google Scholar] [CrossRef]
- Wang, W.X.; Wang, B.H.; Zheng, W.C.; Yin, C.Y.; Zhou, T. Advanced Information Feedback in Intelligent Traffic Systems. Phys. Rev. E 2005, 72, 066702. [Google Scholar] [CrossRef] [PubMed]
- Moussaïd, M.; Helbing, D.; Theraulaz, G. How Simple Rules Determine Pedestrian Behavior and Crowd Disasters. Proc. Natl. Acad. Sci. USA 2011, 108, 6884–6888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, N.W.F.; Kemloh Wagoum, A.U.; Codling, E.A. Human Responses to Multiple Sources of Directional Information in Virtual Crowd Evacuations. J. R. Soc. Interface 2014, 11, 20130904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghani, M.; Sarvi, M. Social Dynamics in Emergency Evacuations: Disentangling Crowd’s Attraction and Repulsion Effects. Phys. A Stat. Mech. Its Appl. 2017, 475, 24–34. [Google Scholar] [CrossRef]
- Low, D.J. Statistical Physics: Following the Crowd. Nature 2000, 407, 465. [Google Scholar] [CrossRef]
- Nicolas, A.; Kuperman, M.; Ibañez, S.; Bouzat, S.; Appert-Rolland, C. Mechanical Response of Dense Pedestrian Crowds to the Crossing of Intruders. Sci. Rep. 2019, 9, 105. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, E.W.M.; Shi, M.; Yuen, R.K.K. Spontaneous Synchronization of Motion in Pedestrian Crowds of Different Densities. Nat. Hum. Behav. 2021, 5, 447–457. [Google Scholar] [CrossRef]
- Helbing, D.; Molnár, P. Social Force Model for Pedestrian Dynamics. Phys. Rev. E 1995, 51, 4282–4286. [Google Scholar] [CrossRef] [Green Version]
- Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J. Simulation of Pedestrian Dynamics Using a Two-Dimensional Cellular Automaton. Phys. A 2001, 295, 507–525. [Google Scholar] [CrossRef] [Green Version]
- Weng, W.G.; Chen, T.; Yuan, H.Y.; Fan, W.C. Cellular Automaton Simulation of Pedestrian Counter Flow with Different Walk Velocities. Phys. Rev. E 2006, 74, 036102. [Google Scholar] [CrossRef]
- Patterson, G.A.; Fierens, P.I.; Sangiuliano Jimka, F.; König, P.G.; Garcimartín, A.; Zuriguel, I.; Pugnaloni, L.A.; Parisi, D.R. Clogging Transition of Vibration-Driven Vehicles Passing through Constrictions. Phys. Rev. Lett. 2017, 119, 248301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, J.; Monaenkova, D.; Linevich, V.; Savoie, W.; Dutta, B.; Kuan, H.S.; Betterton, M.D.; Goodisman, M.A.D.; Goldman, D.I. Collective Clog Control: Optimizing Traffic Flow in Confined Biological and Robophysical Excavation. Science 2018, 361, 672–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressaire, E.; Sauret, A. Clogging of Microfluidic Systems. Soft Matter 2017, 13, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Delarue, M.; Hartung, J.; Schreck, C.; Gniewek, P.; Hu, L.; Herminghaus, S.; Hallatschek, O. Self-Driven Jamming in Growing Microbial Populations. Nat. Phys. 2016, 12, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Garcimartín, A.; Pastor, J.M.; Ferrer, L.M.; Ramos, J.J.; Martín-Gómez, C.; Zuriguel, I. Flow and Clogging of a Sheep Herd Passing through a Bottleneck. Phys. Rev. E 2015, 91, 022808. [Google Scholar] [CrossRef] [Green Version]
- Helbing, D.; Tröster, G.; Wirz, M.; Roggen, D. Recognition of Crowd Behavior from Mobile Sensors with Pattern Analysis and Graph Clustering Methods. Netw. Heterog. Media 2011, 6, 521–544. [Google Scholar] [CrossRef]
- Corbetta, A.; Lee, C.M.; Benzi, R.; Muntean, A.; Toschi, F. Fluctuations around Mean Walking Behaviors in Diluted Pedestrian Flows. Phys. Rev. E 2017, 95, 032316. [Google Scholar] [CrossRef] [Green Version]
- Zanlungo, F.; Yucel, Z.; Brscic, D.; Kanda, T.; Hagita, N. Intrinsic Group Behaviour: Dependence of Pedestrian Dyad Dynamics on Principal Social and Personal Features. PLoS ONE 2017, 12, e0187253. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Weng, W. Study on the Collision Dynamics and the Transmission Pattern between Pedestrians along the Queue. J. Stat. Mech. 2018, 2018, 073406. [Google Scholar] [CrossRef]
- Tordeux, A.; Chraibi, M.; Seyfried, A.; Schadschneider, A. Prediction of Pedestrian Dynamics in Complex Architectures with Artificial Neural Networks. J. Intell. Transp. Syst. 2020, 24, 556–568. [Google Scholar] [CrossRef]
- Rahman, R.; Hasan, S. Short-Term Traffic Speed Prediction for Freeways During Hurricane Evacuation: A Deep Learning Approach. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1291–1296. [Google Scholar] [CrossRef]
- Song, X.; Shibasaki, R.; Yuan, N.J.; Xie, X.; Li, T.; Adachi, R. DeepMob: Learning Deep Knowledge of Human Emergency Behavior and Mobility from Big and Heterogeneous Data. ACM Trans. Inf. Syst. 2017, 35, 1–19. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Mao, H.; Deng, W.; Gao, X. Application of the Best Evacuation Model of Deep Learning in the Design of Public Structures. Image Vis. Comput. 2020, 102, 103975. [Google Scholar] [CrossRef]
- Pang, L.G.; Zhou, K.; Su, N.; Petersen, H.; Stöcker, H.; Wang, X.N. An Equation-of-State-Meter of Quantum Chromodynamics Transition from Deep Learning. Nat. Commun. 2018, 9, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Wang, L.; Zhou, K. Deep Learning Stochastic Processes with QCD Phase Transition. Phys. Rev. D 2021, 103, 116023. [Google Scholar] [CrossRef]
- Wang, L.; Xu, T.; Stoecker, T.; Stoecker, H.; Jiang, Y.; Zhou, K. Machine Learning Spatio-Temporal Epidemiological Model to Evaluate Germany-county-level COVID-19 Risk. Mach. Learn. Sci. Technol. 2021, 2, 035031. [Google Scholar] [CrossRef]
- Heliövaara, S.; Ehtamo, H.; Helbing, D.; Korhonen, T. Patient and Impatient Pedestrians in a Spatial Game for Egress Congestion. Phys. Rev. E 2013, 87, 012802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.D.; Jonker, L.B. Evolutionary Stable Strategies and Game Dynamics. Math. Biosci. 1978, 40, 145–156. [Google Scholar] [CrossRef]
- Kirchner, A.; Nishinari, K.; Schadschneider, A. Friction Effects and Clogging in a Cellular Automaton Model for Pedestrian Dynamics. Phys. Rev. E 2003, 67, 056122. [Google Scholar] [CrossRef] [Green Version]
- Bak-Coleman, J.B.; Alfano, M.; Barfuss, W.; Bergstrom, C.T.; Centeno, M.A.; Couzin, I.D.; Donges, J.F.; Galesic, M.; Gersick, A.S.; Jacquet, J.; et al. Stewardship of Global Collective Behavior. Proc. Natl. Acad. Sci. USA 2021, 118, e2025764118. [Google Scholar] [CrossRef]
- Stewart, A.J.; Mosleh, M.; Diakonova, M.; Arechar, A.A.; Rand, D.G.; Plotkin, J.B. Information Gerrymandering and Undemocratic Decisions. Nature 2019, 573, 117–121. [Google Scholar] [CrossRef]
- Strelioff, C.C.; Crutchfield, J.P.; Hübler, A.W. Inferring Markov Chains: Bayesian Estimation, Model Comparison, Entropy Rate, and out-of-Class Modeling. Phys. Rev. E 2007, 76, 011106. [Google Scholar] [CrossRef] [Green Version]
- Strelioff, C.C.; Crutchfield, J.P. Bayesian Structural Inference for Hidden Processes. Phys. Rev. E 2014, 89, 042119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, A.; Mason, W.; Suri, S.; Watts, D.J. An Experimental Study of Team Size and Performance on a Complex Task. PLoS ONE 2016, 11, e0153048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dolder, D.; van den Assem, M.J. The Wisdom of the Inner Crowd in Three Large Natural Experiments. Nat. Hum. Behav. 2018, 2, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, E.; Dsouza, S.; Kim, R.; Schulz, J.; Henrich, J.; Shariff, A.; Bonnefon, J.F.; Rahwan, I. The Moral Machine Experiment. Nature 2018, 563, 59. [Google Scholar] [CrossRef]
- Toyokawa, W.; Whalen, A.; Laland, K.N. Social Learning Strategies Regulate the Wisdom and Madness of Interactive Crowds. Nat. Hum. Behav. 2019, 3, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, A.; Garcimartín, Á.; Zuriguel, I. Trap Model for Clogging and Unclogging in Granular Hopper Flows. Phys. Rev. Lett. 2018, 120, 198002. [Google Scholar] [CrossRef] [Green Version]
- Cavagna, A.; Giardina, I.; Grigera, T.S. The Physics of Flocking: Correlation as a Compass from Experiments to Theory. Phys. Rep. 2018, 728, 1–62. [Google Scholar] [CrossRef]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical Physics of Social Dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef] [Green Version]
- Ball, P. Why Society Is a Complex Matter: Meeting Twenty-First Century Challenges with a New Kind of Science; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | Mixed | |
---|---|---|---|---|---|---|
MSE | 0.0150 | 0.0397 | 0.0134 | 0.0233 | 0.0095 | 0.0914 |
MAE | 0.0387 | 0.0609 | 0.0401 | 0.0541 | 0.0289 | 0.2350 |
0.9881 | 0.9899 | 0.9910 | 0.9852 | 0.9913 | 0.9565 |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | Mixed | |
---|---|---|---|---|---|---|
2.514 | 2.509 | 2.445 | 2.424 | 2.348 | 2.448 | |
0.039 | 0.034 | −0.020 | −0.051 | −0.127 | −0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, H.; Wang, L. Measuring Dynamics in Evacuation Behaviour with Deep Learning. Entropy 2022, 24, 198. https://doi.org/10.3390/e24020198
Hou H, Wang L. Measuring Dynamics in Evacuation Behaviour with Deep Learning. Entropy. 2022; 24(2):198. https://doi.org/10.3390/e24020198
Chicago/Turabian StyleHou, Huaidian, and Lingxiao Wang. 2022. "Measuring Dynamics in Evacuation Behaviour with Deep Learning" Entropy 24, no. 2: 198. https://doi.org/10.3390/e24020198
APA StyleHou, H., & Wang, L. (2022). Measuring Dynamics in Evacuation Behaviour with Deep Learning. Entropy, 24(2), 198. https://doi.org/10.3390/e24020198