Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers
Abstract
:1. Introduction
2. Probability Space and Decomposed Entropy for Deformed Microcavity Lasers
2.1. Recapitulation of the Probability Space and Random Variables
2.2. Decomposed Entropy of the Peak Intensities for FFPs in Two-Dimensional Microcavity Lasers
3. Illustration of the Proposed Microcavity Lasers
4. Analysis on a Limaçon-Shaped Microcavity
4.1. Marginal and Conditional Intensities in a Limaçon-Shaped Microcavity
4.2. Total and Decomposed Entropies in a Limaçon-Shaped Microcavity
5. Analysis on an Oval-Shaped Microcavity
5.1. Marginal and Conditional Intensities in an Oval-Shaped Microcavity
5.2. Total and Decomposed Entropies in the Oval-Shaped Microcavity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nöckel, J.U.; Stone, A.D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 1997, 385, 45. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.K.; Campillo, A.J. Optical Processes in Microcavities; World Scientific: Singapore, 1996; Volume 3. [Google Scholar]
- Heller, E.J. Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits. Phys. Rev. Lett. 1984, 53, 1515. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Liu, Y.; Xiao, S.; Wang, Z.; Fan, Y.; Han, J.; Ge, L.; Song, Q. Direct observation of chaotic resonances in optical microcavities. Light Sci. Appl. 2021, 10, 135. [Google Scholar] [CrossRef]
- Löck, S.; Bxoxcker, A.; Ketzmerick, R.; Schlagheck, P. Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime. Phys. Rev. Lett. 2010, 104, 114101. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, F.; Ketzmerick, R.; Bäcker, A. Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E 2019, 100, 042219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.-W.; Kim, J.; Moon, S.; An, K. Maximal Shannon entropy in the vicinity of an exceptional point in an open microcavity. Sci. Rep. 2020, 10, 12551. [Google Scholar] [CrossRef]
- Laha, A.; Beniwal, D.; Ghosh, S. Successive switching among four states in a gain-loss-assisted optical microcavity hosting exceptional points up to order four. Phys. Rev. E 2021, 103, 023526. [Google Scholar] [CrossRef]
- Shinohara, S.; Hentschel, M.; Wiersig, J.; Sasaki, T.; Harayama, T. Ray-wave correspondence in limaçon-shaped semiconductor microcavities. Phys. Rev. A 2009, 80, 031801. [Google Scholar] [CrossRef] [Green Version]
- Hentschel, M.; Richter, K. Quantum chaos in optical systems: The annular billiard. Phys. Rev. E 2002, 66, 056207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839. [Google Scholar] [CrossRef] [PubMed]
- Wiersig, J.; Hentschel, M. Combining Directional Light Output and Ultralow Loss in Deformed Microdisks. Phys. Rev. Lett. 2008, 100, 033901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Wang, Q.J.; Diehl, L.; Hentschel, M.; Wiersig, J.; Yu, N.; Pflügl, C.; Capasso, F.; Belkin, M.A.; Edamura, T.; et al. Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity. Appl. Phys. Lett. 2009, 94, 251101. [Google Scholar] [CrossRef]
- Song, Q.; Fang, W.; Liu, B.; Ho, S.-T.; Solomon, G.S.; Cao, H. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A 2009, 80, 041807. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Ge, L.; Stone, A.D.; Cao, H.; Wiersig, J.; Shim, J.-B.; Unterhinninghofen, J.; Fang, W.; Solomon, G.S. Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity. Phys. Rev. Lett. 2010, 105, 103902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.-F.; Zou, C.-L.; Wang, L.; Gong, Q.; Xiao, Y.-F. Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev. 2016, 10, 40. [Google Scholar] [CrossRef]
- Ren, L.; Chen, Z.; Feng, G.; Wang, X.; Yang, Y.; Sun, F.; Liu, Y. Simulation of an asymmetric hexagonal microcavity with high-ratio fluorescence and high-efficiency directional emission. Appl. Opt. 2022, 61, 4571. [Google Scholar] [CrossRef]
- Tian, Z.-N.; Yu, F.; Yu, Y.-H.; Xu, J.-J.; Chen, Q.-D.; Sun, H.-B. Single-mode unidirectional microcavity laser. Opt. Lett. 2017, 42, 1572. [Google Scholar] [CrossRef] [Green Version]
- Wanker, H.; Wiesmann, C.; Kreiner, L.; Butendeich, R.; Luce, A.; Sobczyk, S.; Stern, M.L.; Lang, E.W. Directional emission of white light via selective amplification of photon recycling and Bayesian optimization of multi-layer thin films. Sci. Rep. 2022, 12, 5226. [Google Scholar] [CrossRef]
- Fernández-Fernxaxndez, D.; Gonzxaxlez-Tudela, A. Tunable Directional Emission and Collective Dissipation with Quantum Metasurfaces. Phys. Rev. Lett. 2022, 128, 113601. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.; Hildebrandt, A.; Schlickriede, C.; Gharib, K.; Zentgraf, T.; Förstner, J.; Linden, S. Directional Emission from Dielectric Leaky-Wave Nanoantennas. Nano Lett. 2017, 17, 4178. [Google Scholar] [CrossRef]
- Ryu, J.-W.; Cho, J.; Kim, I.; Choi, M. Optimization of conformal whispering gallery modes in limaçon-shaped transformation cavities. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.-W.; Hentschel, M. Designing coupled microcavity lasers for high-Q modes with unidirectional light emission. Opt. Lett. 2011, 36, 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.-B.; Eberspächer, A.; Wiersig, J. Adiabatic formation of high-Q modes by suppression of chaotic diffusion in deformed microdiscs. New J. Phys. 2013, 15, 113058. [Google Scholar] [CrossRef]
- Park, K.-W.; Ju, C.-H.; Jeong, K. Entropic measure of directional emissions in microcavity lasers. Phys. Rev. A 2022, 106, L031504. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379. [Google Scholar] [CrossRef] [Green Version]
- Godden, J.W.; Stahura, F.L.; Bajorath, J. Variability of Molecular Descriptors in Compound Databases Revealed by Shannon Entropy Calculations. J. Chem. Inf. Comput. Sci. 2000, 40, 796. [Google Scholar] [CrossRef]
- Strait, B.J.; Dewey, T.G. The Shannon information entropy of protein sequences. Biophys. J. 1996, 71, 148. [Google Scholar] [CrossRef] [Green Version]
- Olbryś, J. Entropy-Based Applications in Economics, Finance, and Management. Entropy 2022, 24, 1468. [Google Scholar] [CrossRef]
- Shternshis, A.; Mazzarisi, P.; Marmi, S. Measuring market efficiency: The Shannon entropy of high-frequency financial time series. Chaos Solitons Fractals 2022, 162, 112403. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tsallis, C. Generalized statistical mechanics: Connection with thermodynamics. J. Phys. A Math. Gen. 1991, 24, L69. [Google Scholar] [CrossRef]
- Plastino, A.; Plastino, A.R. On the universality of thermodynamics’ Legendre transform structure. Phys. Lett. A 1997, 226, 257. [Google Scholar] [CrossRef]
- Honea, E.C.; Beach, R.J.; Mitchell, S.C.; Skidmore, J.A.; Emanuel, M.A.; Sutton, S.B.; Payne, S.A.; Avizonis, P.V.; Monroe, R.S.; Harris, D.G. High-power dual-rod Yb:YAG laser. Opt. Lett. 2000, 25, 805. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Matniyaz, T.; Kalichevsky-Dong, M.T.; Nilsson, J.; Jeong, Y. Modeling Er/Yb fiber lasers at high powers. Opt. Express 2020, 28, 16244. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Alon, Z.; Zhang, G.; Chang, S. Analysis of output power variation under mismatched load in Power Amplifier FEM with directional coupler. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 549–552. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.-W.; Son, K.-W.; Ju, C.-H.; Jeong, K. Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers. Entropy 2022, 24, 1737. https://doi.org/10.3390/e24121737
Park K-W, Son K-W, Ju C-H, Jeong K. Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers. Entropy. 2022; 24(12):1737. https://doi.org/10.3390/e24121737
Chicago/Turabian StylePark, Kyu-Won, Kwon-Wook Son, Chang-Hyun Ju, and Kabgyun Jeong. 2022. "Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers" Entropy 24, no. 12: 1737. https://doi.org/10.3390/e24121737
APA StylePark, K.-W., Son, K.-W., Ju, C.-H., & Jeong, K. (2022). Decomposed Entropy and Estimation of Output Power in Deformed Microcavity Lasers. Entropy, 24(12), 1737. https://doi.org/10.3390/e24121737