# Thermodynamically Consistent Models for Coupled Bulk and Surface Dynamics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Jing–Wang model [24]:We firstly define the free energy of the system as follows$$\begin{array}{c}\hfill \begin{array}{c}E\left[\varphi \right]={\int}_{\mathrm{\Omega}}{e}_{b}(\varphi ,{\varphi}_{t},\nabla \varphi ,\nabla \nabla \varphi )d\mathbf{x}+{\int}_{\partial \mathrm{\Omega}}\left[{e}_{s}(\varphi ,{\varphi}_{t},{\nabla}_{s}\varphi ,{\nabla}_{s}{\nabla}_{s}\varphi )\right]ds,\hfill \end{array}\end{array}$$$$\begin{array}{c}\hfill \begin{array}{c}{\varphi}_{t}=-({M}_{b}^{\left(1\right)}-\nabla \xb7{\mathbf{M}}_{b}^{\left(2\right)}\xb7\nabla ){\mu}_{b},\phantom{\rule{1.em}{0ex}}\mathbf{x}\in \mathrm{\Omega},\hfill \\ {\varphi}_{t}=-({M}_{s}+\frac{{\beta}^{2}}{\alpha})({\mu}_{s}+{\mu}_{c})+\frac{\beta}{\alpha}{\mu}_{b},\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega},\hfill \\ \alpha \mathbf{n}\xb7{\mathbf{M}}_{b}^{\left(2\right)}\xb7\nabla {\mu}_{b}=-{\mu}_{b}+\beta ({\mu}_{s}+{\mu}_{c}),\phantom{\rule{1.em}{0ex}}{\nabla}_{\mathbf{n}}{\varphi}_{t}=-{M}_{g}{\mu}_{g},\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega},\hfill \end{array}\end{array}$$
- Knopf–Lam model [28]:We define the free energy as follows$$\begin{array}{c}\hfill \begin{array}{c}E={\int}_{\mathrm{\Omega}}\frac{\u03f5}{2}{|\nabla \varphi |}^{2}+\frac{1}{\u03f5}F\left(\varphi \right)d\mathbf{x}+{\int}_{\partial \mathrm{\Omega}}\frac{\sigma}{2}{\left|{\nabla}_{s}\psi \right|}^{2}+\frac{1}{\sigma}G\left(\psi \right)+\frac{1}{2K}{(H\left(\psi \right)-\varphi )}^{2}ds,\hfill \end{array}\end{array}$$$$\begin{array}{c}\hfill \begin{array}{c}{\varphi}_{t}={\nabla}^{2}{\mu}_{b},\phantom{\rule{1.em}{0ex}}{\mu}_{b}=-\u03f5{\nabla}^{2}\varphi +\frac{1}{\u03f5}{F}^{\prime}\left(\varphi \right),\phantom{\rule{1.em}{0ex}}\mathbf{x}\in \mathrm{\Omega},\hfill \\ {\psi}_{t}={\nabla}_{s}^{2}{\mu}_{s},\phantom{\rule{1.em}{0ex}}{\mu}_{s}=-\sigma {\nabla}_{s}^{2}\psi +\frac{1}{\sigma}{G}^{\prime}\left(\psi \right)+\u03f5{H}^{\prime}\left(\psi \right)\mathbf{n}\xb7\nabla \varphi ,\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega},\hfill \\ \mathbf{n}\xb7\nabla {\mu}_{b}=0,\phantom{\rule{1.em}{0ex}}\u03f5\mathbf{n}\xb7\nabla \varphi =\frac{1}{K}(H\left(\psi \right)-\varphi ),\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega}.\hfill \end{array}\end{array}$$
- Liu–Wu model [27]:By setting $H\left(\psi \right)=\psi $ and $K\to 0$, $H\left(\psi \right)\to \varphi $ in the Knopf–Lam model, the Liu–Wu model is obtained which are given by$$\begin{array}{c}\hfill \begin{array}{c}{\varphi}_{t}={\nabla}^{2}{\mu}_{b},\phantom{\rule{1.em}{0ex}}{\mu}_{b}=-\u03f5{\nabla}^{2}\varphi +\frac{1}{\u03f5}{F}^{\prime}\left(\varphi \right),\phantom{\rule{1.em}{0ex}}\mathbf{x}\in \mathrm{\Omega},\hfill \\ {\varphi}_{t}={\nabla}_{s}^{2}({\mu}_{c}+{\mu}_{s}),\phantom{\rule{1.em}{0ex}}{\mu}_{c}+{\mu}_{s}=\u03f5\mathbf{n}\xb7\nabla \varphi -\sigma {\nabla}_{s}^{2}\varphi +\frac{1}{\sigma}{G}^{\prime}\left(\varphi \right),\phantom{\rule{1.em}{0ex}}\mathbf{n}\xb7\nabla {\mu}_{b}=0,\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega}.\hfill \end{array}\end{array}$$
- Knopf–Signori model [29]:Once the bulk and surface free energies are non-local as in Section 3.3 below, the non-local dynamics are given by$$\begin{array}{c}\hfill \begin{array}{c}{\varphi}_{t}={M}_{b}^{\left(2\right)}{\nabla}^{2}{\mu}_{b},\phantom{\rule{1.em}{0ex}}\mathbf{x}\in \mathrm{\Omega},\hfill \\ {\psi}_{t}=-(-{M}_{s}^{\left(2\right)}{\nabla}^{2}+\frac{{\beta}^{2}}{\alpha}){\mu}_{s}+\frac{\beta}{\alpha}{\mu}_{b},\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega},\hfill \\ \alpha {M}_{b}^{\left(2\right)}\mathbf{n}\xb7\nabla {\mu}_{b}=-{\mu}_{b}+\beta {\mu}_{s},\phantom{\rule{1.em}{0ex}}s\in \partial \mathrm{\Omega}.\hfill \end{array}\end{array}$$

## 2. Thermodynamically Consistent Phase Field Models with Consistent Dynamic Boundary Conditions

#### 2.1. Generalized Onsager Principle

#### 2.2. Models with the Free Energy up to Second Spatial Derivatives

**Remark**

**1.**

#### 2.2.1. Dynamics in the Bulk

#### 2.2.2. Dynamics on the Boundary

**Example**

**1**

**Example**

**2**

#### 2.3. Effect of Mobilities in the Bulk and on the Surface

## 3. Reduction to Limiting Cases

#### 3.1. The Jing–Wang Model [24]

#### 3.2. The Knopf–Lam Model [28] and the Liu–Wu Model [27]

#### 3.3. Non-Local Models including the Knopf–Signori Model [29]

#### 3.4. Reactive Transport Equation in a Binary Polymeric System

## 4. Numerical Results for a Binary Reactive System

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Wang, Q. Generalized Onsager Principle and its Application. In Frontiers and Progress of Current Soft Matter Research; Liu, X.Y., Ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev.
**1931**, 37, 405. [Google Scholar] [CrossRef] - Yang, X.; Li, J.; Forest, M.G.; Wang, Q. Hydrodynamic theories for flows of active liquid crystals and the generalized Onsager principle. Entropy
**2016**, 18, 202. [Google Scholar] [CrossRef] [Green Version] - Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev.
**1931**, 38, 2265. [Google Scholar] [CrossRef] [Green Version] - Li, J.; Zhao, J.; Wang, Q. Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys.
**2019**, 382, 202–220. [Google Scholar] [CrossRef] - Zhao, X.; Qian, T.; Wang, Q. Thermodynamically Consistent Hydrodynamic Models of Multi-Component Compressible Fluid Flows. Commun. Math. Sci.
**2020**, 18, 1441–1468. [Google Scholar] [CrossRef] - Zhao, J.; Yang, X.; Gong, Y.; Zhao, X.; Yang, X.; Li, J.; Wang, Q. A general strategy for numerical approximations of non-equilibrium models part I: Thermodynamical systems. Int. J. Numer. Anal. Model.
**2018**, 15, 884–918. [Google Scholar] - Sun, S.; Li, J.; Zhao, J.; Wang, Q. Structure-Preserving Numerical Approximations to a Non-isothermal Hydrodynamic Model of Binary Fluid Flows. J. Sci. Comput.
**2020**, 83, 50. [Google Scholar] [CrossRef] - Xing, X. Topology and geometry of smectic order on compact curved substrates. J. Stat. Phys.
**2009**, 134, 487–536. [Google Scholar] [CrossRef] - Steinbach, I.; Pezzolla, F.; Nestler, B.; Seeßelberg, M.; Prieler, R.; Schmitz, G.J.; Rezende, J.L. A phase field concept for multiphase systems. Phys. D
**1996**, 94, 135–147. [Google Scholar] [CrossRef] - Singer-Loginova, I.; Singer, H. The phase field technique for modeling multiphase materials. Rep. Prog. Phys.
**2008**, 71, 106501. [Google Scholar] [CrossRef] [Green Version] - Steinbach, I. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng.
**2009**, 17, 073001. [Google Scholar] [CrossRef] - Chen, L.Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res.
**2002**, 32, 113–140. [Google Scholar] [CrossRef] [Green Version] - Galenko, P.; Jou, D. Rapid solidification as non-ergodic phenomenon. Phys. Rep.
**2019**, 818, 1–70. [Google Scholar] [CrossRef] - Salhoumi, A.; Galenko, P. Gibbs-Thomson condition for the rapidly moving interface in a binary system. Phys. A Stat. Mech. Appl.
**2016**, 447, 161–171. [Google Scholar] [CrossRef] - Elder, K.; Grant, M.; Provatas, N.; Kosterlitz, J. Sharp interface limits of phase-field models. Phys. Rev. E
**2001**, 64, 021604. [Google Scholar] [CrossRef] [Green Version] - Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.
**1958**, 28, 258–267. [Google Scholar] [CrossRef] - Qin, R.; Bhadeshia, H. Phase field method. Mater. Sci. Technol.
**2010**, 26, 803–811. [Google Scholar] [CrossRef] - Cirillo, E.N.; Ianiro, N.; Sciarra, G. Allen–Cahn and Cahn–Hilliard like equations for dissipative dynamics of saturated porous media. J. Mech. Phys. Solids
**2013**, 61, 629–651. [Google Scholar] [CrossRef] [Green Version] - Nestler, B.; Choudhury, A. Phase-field modeling of multi-component systems. Curr. Opin. Solid State Mater. Sci.
**2011**, 15, 93–105. [Google Scholar] [CrossRef] - Kim, J. Phase-field models for multi-component fluid flows. Commun. Comput. Phys.
**2012**, 12, 613–661. [Google Scholar] [CrossRef] - Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Knopf, P.; Lam, K.F.; Liu, C.; Metzger, S. Phase-field dynamics with transfer of materials: The Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions. ESAIM Math. Model. Numer. Anal.
**2021**, 55, 229–282. [Google Scholar] [CrossRef] - Jing, X.; Wang, Q. Thermodynamically Consistent Dynamic Boundary Conditions of Phase Field Models. arXiv
**2022**, arXiv:2211.04966. [Google Scholar] - Gal, C.G. A Cahn–Hilliard model in bounded domains with permeable walls. Math. Method Appl. Sci.
**2006**, 29, 2009–2036. [Google Scholar] [CrossRef] - Goldstein, G.R.; Miranville, A.; Schimperna, G. A Cahn–Hilliard model in a domain with non-permeable walls. Phys. D
**2011**, 240, 754–766. [Google Scholar] [CrossRef] - Liu, C.; Wu, H. An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: Model derivation and mathematical analysis. Arch. Ration. Mech. Anal.
**2019**, 233, 167–247. [Google Scholar] [CrossRef] [Green Version] - Knopf, P.; Lam, K.F. Convergence of a Robin boundary approximation for a Cahn–Hilliard system with dynamic boundary conditions. Nonlinearity
**2020**, 33, 4191. [Google Scholar] [CrossRef] - Knopf, P.; Signori, A. On the nonlocal Cahn–Hilliard equation with nonlocal dynamic boundary condition and boundary penalization. J. Differ. Equ.
**2021**, 280, 236–291. [Google Scholar] [CrossRef] - Yoon, G.H. Topology optimization for nonlinear dynamic problem with multiple materials and material-dependent boundary condition. Finite Elem. Anal. Des.
**2011**, 47, 753–763. [Google Scholar] [CrossRef] - Gavrilyuk, S.; Gouin, H. Dynamic boundary conditions for membranes whose surface energy depends on the mean and Gaussian curvatures. Math. Mech. Complex Syst.
**2019**, 7, 131–157. [Google Scholar] [CrossRef] [Green Version] - Rakita, Y.; Lubomirsky, I.; Cahen, D. When defects become dynamic: Halide perovskites: A new window on materials? Mater. Horiz.
**2019**, 6, 1297–1305. [Google Scholar] [CrossRef] - Martínez-González, J.A.; Zhou, Y.; Rahimi, M.; Bukusoglu, E.; Abbott, N.L.; de Pablo, J.J. Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA
**2015**, 112, 13195–13200. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chen, C.W.; Hou, C.T.; Li, C.C.; Jau, H.C.; Wang, C.T.; Hong, C.L.; Guo, D.Y.; Wang, C.Y.; Chiang, S.P.; Bunning, T.J.; et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun.
**2017**, 8, 727. [Google Scholar] [CrossRef] [PubMed] - Rahman, M.A.; Said, S.M.; Balamurugan, S. Blue phase liquid crystal: Strategies for phase stabilization and device development. Sci. Technol. Adv. Mater.
**2015**, 16, 033501. [Google Scholar] [CrossRef] [PubMed] - Colli, P.; Fukao, T.; Lam, K.F. On a coupled bulk–surface Allen–Cahn system with an affine linear transmission condition and its approximation by a Robin boundary condition. Nonlinear Anal.
**2019**, 184, 116–147. [Google Scholar] [CrossRef] [Green Version] - Fukao, T.; Wu, H. Separation property and convergence to equilibrium for the equation and dynamic boundary condition of Cahn–Hilliard type with singular potential. Asymptot. Anal.
**2021**, 124, 303–341. [Google Scholar] [CrossRef] - Gal, C.G.; Wu, H. Asymptotic behavior of a Cahn–Hilliard equation with Wentzell boundary conditions and mass conservation. Discret. Contin. Dyn. Syst.
**2008**, 22, 1041. [Google Scholar] [CrossRef] - Garcke, H.; Knopf, P. Weak Solutions of the Cahn–Hilliard System with Dynamic Boundary Conditions: A Gradient Flow Approach. SIAM J. Math. Anal.
**2020**, 52, 340–369. [Google Scholar] [CrossRef] [Green Version] - Colli, P.; Fukao, T. Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl.
**2015**, 429, 1190–1213. [Google Scholar] [CrossRef] - Fukao, T.; Yoshikawa, S.; Wada, S. Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional case. Commun. Pure Appl. Anal.
**2017**, 16, 1915. [Google Scholar] [CrossRef] [Green Version] - Okumura, M.; Furihata, D. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discret. Contin. Dyn. Syst.
**2020**, 40, 4927. [Google Scholar] [CrossRef] - Onsager, L.; Machlup, S. Fluctuations and irreversible processes. Phys. Rev.
**1953**, 91, 1505. [Google Scholar] [CrossRef] - Machlup, S.; Onsager, L. Fluctuations and irreversible process. II. Systems with kinetic energy. Phys. Rev.
**1953**, 91, 1512. [Google Scholar] [CrossRef] - Dziuk, G.; Elliott, C.M. Finite element methods for surface PDEs. Acta Numer.
**2013**, 22, 289–396. [Google Scholar] [CrossRef] [Green Version] - Brenner, H. Interfacial Transport Processes and Rheology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys.
**1997**, 87, 37–61. [Google Scholar] [CrossRef] [Green Version] - Gal, C.G. Doubly nonlocal Cahn–Hilliard equations. Annales de l’Institut Henri Poincaré C Analyse non Linéaire
**2018**, 35, 357–392. [Google Scholar] [CrossRef] - Jing, X.; Forest, M.G.; Zhao, J.; Wang, Q. Thermodynamically Consistent Models for Reactive Transport in Multi-phase Incompressible Polymeric Systems. 2022; to be submitted. [Google Scholar]
- Doi, M. Introduction to Polymer Physics; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Levine, H.; Rappel, W.J. Membrane-bound Turing patterns. Phys. Rev. E
**2005**, 72, 061912. [Google Scholar] [CrossRef] [Green Version] - Novak, I.L.; Gao, F.; Choi, Y.S.; Resasco, D.; Schaff, J.C.; Slepchenko, B.M. Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys.
**2007**, 226, 1271–1290. [Google Scholar] [CrossRef] [Green Version] - Yang, W.; Rånby, B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J. Appl. Polym. Sci.
**1996**, 62, 533–543. [Google Scholar] [CrossRef] - Garcke, H.; Kampmann, J.; Rätz, A.; Röger, M. A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes. Math. Model. Methods Appl. Sci.
**2016**, 26, 1149–1189. [Google Scholar] [CrossRef] [Green Version] - Yang, W.; Rånby, B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J. Appl. Polym. Sci.
**1996**, 62, 545–555. [Google Scholar] [CrossRef] - Jing, X.; Li, J.; Zhao, X.; Wang, Q. Second order linear energy stable schemes for Allen-Cahn equations with nonlocal constraints. J. Sci. Comput.
**2019**, 80, 500–537. [Google Scholar] [CrossRef] [Green Version] - Zhao, J.; Wang, Q.; Yang, X. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng.
**2017**, 110, 279–300. [Google Scholar] [CrossRef]

**Figure 1.**Time evolution of the spinodal decomposition of the binary polymer system with static (

**a**–

**c**) and dynamic boundary conditions (

**d**–

**i**), respectively. Snapshots of numerical solution $\varphi $ are taken at $T=0,4,8$, respectively. (

**a**–

**c**). The solution is obtained with homogeneous Neumann boundary conditions on ${\Gamma}_{i},i=1,2,3,4$. (

**d**–

**f**). The solution is obtained with a set of dynamic boundary conditions at ${k}_{s}=0,\eta =100,\alpha =1,\beta =1,\gamma =1$. Dynamic boundary effects on the bulk solution near ${\Gamma}_{1}$ are observed. (

**g**–

**i**). The solution is obtained with a set of dynamic boundary conditions at ${k}_{s}=5\times {10}^{-2},\eta =100,\alpha =1,\beta =1,\gamma =1$. The boundary reactive dynamics shown to impact the bulk solution more significantly near ${\Gamma}_{1}$. The other model parameter values used in the simulations are given as follows: $\beta =\gamma =n={Q}_{1}={Q}_{2}=1,{M}_{b}^{\left(1\right)}={M}_{c}^{\left(1\right)}=0,{M}_{b}^{\left(2\right)}={M}_{c}^{\left(2\right)}={M}_{s}^{\left(2\right)}=1\times {10}^{-4},\chi ={\chi}_{s}=4,{k}_{b}=0,b=0.02$.

**Figure 2.**Time evolution of the bulk volume fraction in (

**a**) and bulk free energy in (

**b**) with respect to the three simulations depicted in Figure 1. It is obvious that the bulk volume fraction with homogeneous Neumann boundary conditions keeps as a constant. However, no matter whether or not there is the reaction on the boundary, the bulk volume fraction increases with time when the boundary conditions are dynamic. Compared with the DBCs without reaction, the bulk volume fraction in the DBCs with reaction increases faster than that without reaction. The bulk free energy in each case decays in time as expected. Due to the existence of chemical reaction, the bulk free energy in the third simulation (with surface reaction) decreases faster than that in the second one (without surface reaction).

**Figure 3.**The effect of the boundary reaction rate and magnitude of the coupling free energy on bulk dynamics in the presence of inward/outward flux ($\alpha =\beta =\gamma =1$). Snapshots of the solution of $\varphi $ are taken $T=8$. (

**a**) Test 1: strong coupling without boundary reaction (${k}_{s}=0,\eta =1\times {10}^{2}$). (

**b**) Test 2: decoupling without boundary reaction (${k}_{s}=\eta =0$). (

**c**) Test 3: strong coupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =1\times {10}^{2}$). (

**d**) Test 4: decoupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =0$). The other model parameter values are the same as those listed in the caption in Figure 1. These four plots show that the non-trivial effect from both the coupling energy and the boundary reaction impacts the bulk dynamics nearby the boundary. In (

**a**,

**c**, and

**d**), there are large merging droplets or lamellar shown near the boundary.

**Figure 4.**Time evolution of the bulk volume fractions in (

**a**) and the total free energy in (

**b**) with respect to the four tests in Figure 2. We find the bulk volume fractions increase with time in tests 1, 3, and 4, which are related to the merging droplets or lamellar in Figure 3a,b,d. Since there is a leakage of bulk volume fraction in test 2, we do not find any large droplets or lamellar in Figure 3b. The total free energy in each test decays in time as expected.

**Figure 5.**The effect of the boundary reaction rate and magnitude of the coupling free energy on bulk dynamics in the presence of inward/outward flux ($\alpha =0.1,\beta =\gamma =10$). Snapshots of the solution of $\varphi $ are taken $T=8$. (

**a**) Test 5: strong coupling without boundary reaction (${k}_{s}=0,\eta =1\times {10}^{2}$). (

**b**) Test 6: decoupling without boundary reaction (${k}_{s}=\eta =0$). (

**c**) Test 7: strong coupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =1\times {10}^{2}$). (

**d**) Test 8: decoupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =0$). The other model parameter values are the same as those listed in the caption in Figure 1. These four plots show both the coupling energy and the boundary reaction impact the bulk dynamics near the boundary.

**Figure 6.**The effect of the boundary reaction rate and magnitude of the coupling free energy on bulk dynamics in the presence of inward/outward flux ($\alpha =10,\beta =\gamma =0.1$). Snapshots of the solution of $\varphi $ are taken $T=8$. (

**a**) Test 9: strong coupling without boundary reaction (${k}_{s}=0,\eta =1\times {10}^{2}$). (

**b**) Test 10: decoupling without boundary reaction (${k}_{s}=\eta =0$). (

**c**) Test 11: strong coupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =1\times {10}^{2}$). (

**d**) Test 12: decoupling with boundary reaction (${k}_{s}=5\times {10}^{-2},\eta =0$). The other model parameter values are the same as those listed in the caption in Figure 1. These four plots show that both the coupling energy and the boundary reaction impact the bulk dynamics near the boundary.

**Figure 7.**Time evolution of the bulk volume fractions in test 5–8 in (

**a**) and test 9–12 in (

**b**). We find the bulk volume fractions increase with time in tests 5–8, which are related to the merging droplets or lamellar in Figure 5. Since there are leakages of bulk volume fractions in tests 9–12, we find there are lamellar formed by the other phase in Figure 6.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jing, X.; Wang, Q.
Thermodynamically Consistent Models for Coupled Bulk and Surface Dynamics. *Entropy* **2022**, *24*, 1683.
https://doi.org/10.3390/e24111683

**AMA Style**

Jing X, Wang Q.
Thermodynamically Consistent Models for Coupled Bulk and Surface Dynamics. *Entropy*. 2022; 24(11):1683.
https://doi.org/10.3390/e24111683

**Chicago/Turabian Style**

Jing, Xiaobo, and Qi Wang.
2022. "Thermodynamically Consistent Models for Coupled Bulk and Surface Dynamics" *Entropy* 24, no. 11: 1683.
https://doi.org/10.3390/e24111683