Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology
Abstract
:1. Introduction
- Replication. Reactants interact to produce compound mainly from another chemical compound, substrate . Metabolism is assumed implicitly in the replication process. This process retains a sense of order which will be measured in terms of configuration entropy.
- Variation. Spatial patterns (containing “bricks” of ) have multiple and equivalent forms for fixed values of physical and chemical parameters. This is the analog to the concept of degeneration of states in physics.
- Heredity. On a large scale of perturbations, there is a viable continuity of equivalent traits (patterns) promoting adaptation.
2. Reaction–Diffusion for Proto-Tissues
3. Stationary States: Equivalent Solutions and a Comprehensive Complexity Measure
4. Constructing Proto-Cell Aggregates (Tissues)
5. Proto-Tissue Complexity and Entropy from RNA Estimation on Earth
6. Proto-Tissue Complexity and Planetary Gravity: Comparison with Earth
7. Conclusions and Scopes
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hazen, R.M. Life’s rocky start. Sci. Am. 2001, 284, 76–851. [Google Scholar] [CrossRef] [PubMed]
- Steel, M.; Penney, D. Common ancestry put to the test. Nature 2010, 465, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, E. Wath Is Life; Cambridge Universite Press: Cambridge, UK, 1944. [Google Scholar]
- Benner, S.A. Defining life. Astrobiology 2010, 10, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branscomb, E.; Russell, M.J. Turnstile and bifurcator: The disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta Bioenerg. 2013, 1827, 62–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyva, Y.; Martín, O.; García-Jacas, C.R. Constraining the prebiotic cell size limits in extremely hostile environments: A dynamics perspective. Astrobiology 2018, 18, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Dom, E.D.; Nealson, K.H.; Adami, C. Monomer abundance distribution patterns as a universal biosignature: Examples from terrestrial and digital life. J. Mol. Evol. 2011, 72, 283–295. [Google Scholar]
- Barge, L.M.; Branscomb, E.; Brucato, J.R.; Cardoso, S.S.S.; Cartwright, J.H.E.; Danielache, S.O.; Galante, D.; Kee, T.P.; Miguel, Y.; Mojzsis, S.; et al. Thermodynamics, Disequilibrium, Evolution: Far-from-equilibrium geological and chemical considerations for origin-of-life research. Orig. Life Evol. Biosph. 2017, 47, 39–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 1952, 237, 37–72. [Google Scholar]
- Maynard-Smith, J. Shaping Life: Gene, Embryo and Evolution; Weidenfield and Nicolson: London, UK, 1998. [Google Scholar]
- Maynard-Smith, J.; Szathmáry, E. The Origins of Life: From the Birth of Life to the Origin of Language; Oxford Press: Oxford, UK, 1999. [Google Scholar]
- Flores, J.C. Prebiotic Aggregates (Tissues) Emerging from Reaction–Diffusion: Formation Time, Configuration Entropy and Optimal Spatial Dimension. Entropy 2022, 24, 124. [Google Scholar] [CrossRef]
- Varela, F.J.; Maturana, H.R.; Uribe, R. Autopoiesis: The organization of living systems, its characterization and a model. Biosystems 1974, 5, 187–196. [Google Scholar] [CrossRef]
- Maturana, H.R.; Varela, F.J. Autopoiesis and Cognition: The Realization of the Living; Reidel Publishing Company: Dordrecht, The Netherlands, 1980. [Google Scholar]
- Veloz, T. Goals as Emergent Autopoietic Processes. Front. Bioeng. Biotechnol. 2021, 9, 720652. [Google Scholar] [CrossRef] [PubMed]
- Busseniers, E.; Veloz, T.; Heylighen, F. Goal Directedness, Chemical Organizations, and Cybernetic Mechanisms. Entropy 2021, 23, 1039. [Google Scholar] [CrossRef] [PubMed]
- Beer, R.D. An Investigation into the Origin of Autopoiesis. Artif. Life 2020, 26, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Nousala, S.; Hall, W.P. Emerging Autopoietic Communities—Scalability of Knowledge Transfer in Complex Systems. In Proceedings of the 2008 IFIP International Conference on Network and Parallel Computing, Washington, DC, USA, 18–21 October 2008; pp. 418–425. [Google Scholar] [CrossRef] [Green Version]
- Schnakenberg, J. Simple chemical reaction systems with limit cycle behavior. J. Theoret. Biol. 1979, 81, 389–400. [Google Scholar] [CrossRef]
- Haken, F. Synergetics, Introduction and Advanced Topics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Murray, J.D. Mathematical Biology I: An Introduction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Murray, J.D. Mathematical Biology II: An Introduction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Al Noufaey, K.S. Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback. Results Phys. 2018, 9, 609–614. [Google Scholar] [CrossRef]
- Huang, K. Statistical Mechanics; Wiley and Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Statistical Mechanics; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Toda, M.; Kubo, R.; Saito, N. Statistical Physics I; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Pathria, R.K. Statistical Mechanics; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Lopez, A.; Fiore, M. Investigating Prebiotic Protocells for a Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southworth, J.; Wheatley, P.J.; Sams, G. A method for the direct determination of surface gravities of transiting extrasolar planets. MNRAS Lett. 2007, 379, L11–L15. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, F.J.; Luque, B. Walking on Exoplanet. Astrobiology 2016, 16, 325–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze-Makuch, D.; Heller, R.; Guinan, E. In Search for a Planet Better than Earth: Top Contenders for a Superhabitable World. Astrobiology 2020, 20, 1394–1404. [Google Scholar] [CrossRef]
- Mendez, A.; Rivera-Valentín, E.G.; Schulze-Makuch, D.; Filiberto, J.; Ramírez, R.M.; Wood, T.E.; Dávila, A.; McKay, C.; Ceballos, K.N.O.; Jusino-Maldonado, M.; et al. Habitability models for astrobiology. Astrobiology 2021, 21, 1017–1027. [Google Scholar] [CrossRef]
- Clark, B.C.; Kolb, V.; Steele, A.; House, C.; Lanza, N.; Gasda, P.; VanBommel, S.; Newsom, H.; Martínez-Frías, J. Origin of life on Mars: Suitability and opportunities. Life 2021, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Longo, A.; Damer, B. Factoring origin of life hypothesis into the search for life in the solar system and beyond. Life 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Guttenberg, N.; Laneuville, M.; Ilardo, M.; Aubert-Kato, N. Transferable measurements of heredity in models of the origin of life. PLoS ONE 2015, 10, e0140663. [Google Scholar] [CrossRef] [PubMed]
- Arbesman, S.; Laughlim, G. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to hearth. PLoS ONE 2010, 5, e13061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleicher, D.R.G.; Bovino, S. The Fermi paradox: Impact of astrophysical processes and dynamical evolution. Int. J. Astrobiol. 2022, 1–14. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Herranz, R.; Van Loon, J.J.W.A.; Medina, F.J. Simulated microgravity, mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci. Rep. 2018, 8, 6424. [Google Scholar] [CrossRef] [Green Version]
- Bonner, J.T. Perspective: The size-complexity rule. Evolution 2004, 58, 1883–1890. [Google Scholar] [CrossRef]
- Anteneodo, C.; Plastino, A.R. Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity. Phys. Lett. A 1996, 223, 348–354. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores, J.C. Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology. Entropy 2022, 24, 1598. https://doi.org/10.3390/e24111598
Flores JC. Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology. Entropy. 2022; 24(11):1598. https://doi.org/10.3390/e24111598
Chicago/Turabian StyleFlores, Juan César. 2022. "Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology" Entropy 24, no. 11: 1598. https://doi.org/10.3390/e24111598
APA StyleFlores, J. C. (2022). Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology. Entropy, 24(11), 1598. https://doi.org/10.3390/e24111598