A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation
Abstract
:1. Introduction
- (1)
- Organizing burn image datasets.
- (2)
- A burn area segmentation method with few parameters was proposed.
- (3)
- The retinal ganglion cells, which neuron dynamics are more in line with the characteristics of the brain, were introduced into our SNN model.
- (4)
- An improved input coding method and the cross-layer skip concatenation structure was introduced to our SNN model.
2. Methods
2.1. Dataset
2.2. Data Augmentation
2.3. Network Structure
2.3.1. Retinal Ganglion Cell Neuron
2.3.2. Input Spike Encoding
2.3.3. Contracting Path
2.3.4. Pyramid Pooling Module
2.3.5. Expansive Path and Predication
2.4. Learning Strategy and Loss Function
3. Results
3.1. Experiment Setup
3.2. Metrics
3.3. RGC Model vs. LIF Model
3.4. Segmentation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Jeschke, M.G.; Chinkes, D.L.; Finnerty, C.C.; Kulp, G.; Suman, O.E.; Norbury, W.B.; Branski, L.K.; Gauglitz, G.G.; Mlcak, R.P.; Herndon, D.N. The pathophysiologic response to severe burn injury. Ann. Surg. 2008, 248, 387–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, M.B.; Hayden, D.; Elson, C.; Nathens, A.B.; Gamelli, R.L.; Gibran, N.S.; Herndon, D.N.; Arnoldo, B.; Silver, G.; Schoenfeld, D.; et al. The association between fluid administration and outcome following major burn: A multicenter study. Ann. Surg. 2007, 245, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.S.; Rose, K.J.; Desai, H.M.; Mileski, P.J.; Barrow, E.R.; Herndon, D.N. Mortality determinants in massive pediatric burns. An analysis of 103 children with > or =80% TBSA burns (> or =70% full-thickness). Ann. Surg. 1997, 225, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Latenser, B.A. Critical care of the burn patient: The first 48 h. Crit. Care Med. 2009, 37, 2819–2826. [Google Scholar] [CrossRef] [PubMed]
- Lund, C.C.; Browder, N.C. The estimation of area of burns. Surg Gynecol. Obs. 1944, 79, 352. [Google Scholar]
- Mackway-Jones, K. Towards evidence based emergency medicine: Best BETs from the Manchester Royal Infirmary. Emerg. Med. J. 2003, 20, 362. [Google Scholar] [CrossRef] [Green Version]
- Minimas, D.A. A critical evaluation of the Lund and Browder chart. WOUNDS 2007, 3, 58. [Google Scholar]
- Wachtel, T.L.; Berry, C.C.; Wachtel, E.E.; Frank, H.A. The inter-rater reliability of estimating the size of burns from various burn area chart drawings. Burns 2000, 26, 156–170. [Google Scholar] [CrossRef]
- Wendler, C.B.; Irakoze, V. Utility of palm and hand surface area in approximating burn extent in Burundian adults and children. Burns 2022, 48, 456–458. [Google Scholar] [CrossRef]
- Monstrey, S.; Hoeksema, H.; Verbelen, J.; Pirayesh, A.; Blondeel, P. Assessment of burn depth and burn wound healing potential. Burns 2008, 34, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Ruminski, J.; Kaczmarek, M.; Renkielska, A.; Nowakowski, A.Z. Thermal Parametric Imaging in the Evaluation of Skin Burn Depth. IEEE Trans. Biomed. Eng. 2007, 54, 303–312. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. High-resolution burn imaging in pig skin by photoacoustic microscopy. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, San Jose, CA, USA, 13 February 2007; SPIE: Bellingham, WA, USA; Volume 6437, pp. 76–81. [Google Scholar]
- Zhao, S.X.; Lu, T. The classification of the depth of burn injury using hybrid neural network. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–23 September 1995; Volume 1, pp. 815–816. [Google Scholar]
- Wantanajittikul, K.; Auephanwiriyakul, S.; Theera-Umpon, N.; Koanantakool, T. Automatic segmentation and degree identification in burn color images. In Proceedings of the 4th 2011 Biomedical Engineering International Conference, Chiang Mai, Thailand, 29–31 January 2012; pp. 169–173. [Google Scholar]
- Acha, B.; Serrano, C.; Fondón, I.; Gómez-Cía, T. Burn Depth Analysis Using Multidimensional Scaling Applied to Psychophysical Experiment Data. IEEE Trans. Med. Imaging 2013, 32, 1111–1120. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Chauhan, J.; Goyal, P. Deep Learning based fully automatic efficient Burn Severity Estimators for better Burn Diagnosis. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Liu, H.; Yue, K.; Cheng, S.; Li, W.; Fu, Z. A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning. Comput. Math. Methods Med. 2021, 2021, 5514224. [Google Scholar] [CrossRef]
- Wei, H.; Lee, F.; Hu, C.; Chen, Q. MOO-DNAS: Efficient Neural Network Design via Differentiable Architecture Search Based on Multi-Objective Optimization. IEEE Access 2022, 10, 14195–14207. [Google Scholar] [CrossRef]
- Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: Review and advancements. Crit. Care 2015, 19, 243. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ke, Z.; He, Z.; Chen, X.; Zhang, Y.; Xie, P.; Li, T.; Zhou, J.; Li, F.; Yang, C.; et al. Real-time burn depth assessment using artificial networks: A large-scale, multicentre study. Burns 2020, 46, 1829–1838. [Google Scholar] [CrossRef]
- Liu, B.; Wei, Y.; Zhang, Y.; Yang, Q. Deep Neural Networks for High Dimension, Low Sample Size Data. In Proceedings of the IJCAI’17: 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2287–2293. [Google Scholar]
- Abderrahmane, N.; Lemaire, E.; Miramond, B. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence. Neural Netw. 2019, 121, 366–386. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 2004, 15, 1063–1070. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Xue, F.; Song, Y. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity. Phys. A Stat. Mech. Its Appl. 2018, 491, 716–728. [Google Scholar] [CrossRef]
- Bensimon, M.; Greenberg, S.; Ben-Shimol, Y.; Haiut, M. A New SCTN Digital Low Power Spiking Neuron. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2937–2941. [Google Scholar] [CrossRef]
- Tang, G.; Shah, A.; Michmizos, K.P. Spiking neural network on neuromorphic hardware for energy-efficient unidimensional slam. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4176–4181. [Google Scholar]
- Zhou, Q.; Shi, Y.; Xu, Z.; Qu, R.; Xu, G. Classifying Melanoma Skin Lesions Using Convolutional Spiking Neural Networks with Unsupervised STDP Learning Rule. IEEE Access 2020, 8, 101309–101319. [Google Scholar] [CrossRef]
- Rueckauer, B.; Liu, S.C. Conversion of analog to spiking neural networks using sparse temporal coding. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training Deep Spiking Neural Networks Using Backpropagation. Front. Neurosci. 2016, 10, 508. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A Database and Web-Based Tool for Image Annotation. Int. J. Comput. Vis. 2007, 77, 157–173. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Sernagor, E.; Eglen, S.J.; Wong, R.O. Development of Retinal Ganglion Cell Structure and Function. Prog. Retin. Eye Res. 2001, 20, 139–174. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Na, B.; Yoon, S. T2FSNN: Deep spiking neural networks with time-to-first-spike coding. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1–6. [Google Scholar]
- Rathi, N.; Roy, K. DIET-SNN: A Low-Latency Spiking Neural Network with Direct Input Encoding and Leakage and Threshold Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–9. [Google Scholar] [CrossRef]
- Xu, Q.; Qi, Y.; Yu, H.; Shen, J.; Tang, H.; Pan, G. CSNN: An Augmented Spiking based Framework with Perceptron-Inception. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1646–1652. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks. Front. Neurosci. 2018, 12, 331. [Google Scholar] [CrossRef] [Green Version]
- Singarimbun, R.N.; Nababan, E.B.; Sitompul, O.S. Adaptive Moment Estimation to Minimize Square Error in Backpropagation Algorithm. In Proceedings of the 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Medan, Indonesia, 28–29 November 2019; pp. 1–7. [Google Scholar] [CrossRef]
- LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 17 October 2022).
- Orchard, G.; Jayawant, A.; Cohen, G.K.; Thakor, N. Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 2015, 9, 437. [Google Scholar] [CrossRef]
- Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.; Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.; Mendoza, M.; et al. A Low Power, Fully Event-Based Gesture Recognition System. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7243–7252. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, February 2018; pp. 801–818. [Google Scholar]
Dataset | Network Structures |
---|---|
MNIST | Encoding-RGC(LIF)-AP-RGC(LIF)-AP-RGC(LIF)-RGC(LIF)-Out |
N-MNIST | Encoding-RGC(LIF)-RGC(LIF)-Out |
DVS-128 gesture | Encoding-AP-RGC(LIF)-RGC(LIF)-AP-RGC(LIF)-AP-RGC(LIF)-Out |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Li, R.; Wang, C.; Zhang, R.; Yue, K.; Li, W.; Li, Y. A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation. Entropy 2022, 24, 1526. https://doi.org/10.3390/e24111526
Liang J, Li R, Wang C, Zhang R, Yue K, Li W, Li Y. A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation. Entropy. 2022; 24(11):1526. https://doi.org/10.3390/e24111526
Chicago/Turabian StyleLiang, Jiakai, Ruixue Li, Chao Wang, Rulin Zhang, Keqiang Yue, Wenjun Li, and Yilin Li. 2022. "A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation" Entropy 24, no. 11: 1526. https://doi.org/10.3390/e24111526
APA StyleLiang, J., Li, R., Wang, C., Zhang, R., Yue, K., Li, W., & Li, Y. (2022). A Spiking Neural Network Based on Retinal Ganglion Cells for Automatic Burn Image Segmentation. Entropy, 24(11), 1526. https://doi.org/10.3390/e24111526