E-Bayesian and H-Bayesian Inferences for a Simple Step-Stress Model with Competing Failure Model under Progressively Type-II Censoring
Abstract
:1. Introduction
2. Model Description and MLEs
2.1. Basic Assumption
- (1)
- The unit fails only due to one of the two independent competing failure causes with failure times and , respectively. A failure time is recorded as joint random variable . Let , that denote the indicator variable for the cause of failure time .
- (2)
- The lifetime follows an exponential distribution with scale parameter . Let be the mean time-to-failure of a test unit at the stress level by the failure cause for . The cumulative distribution function (CDF) and probability density function (PDF) are given as follows, respectively
- (3)
- The scale parameter agrees with a log-linear function of stress
- (4)
- Lifetime distribution at different stress levels is related by CEM. The CEM assumes that the remaining lifetime of a unit depends only on the cumulative exposure accumulated at the current stress level, regardless of how the exposure is actually accumulated. The failure probability of product working time under stress is equivalent to the failure probability of product working time under stress . At the time when the stress level increases from to , the CDF of the lifetime of the test unit failed due to cause for can be written as follows:
2.2. Model Description
2.3. Maximum Likelihood Estimates
3. Interval Estimations
3.1. Asymptotic Confidence Intervals (ACIs)
3.2. Bootstrap Confidence Intervals (BCIs)
3.2.1. Bootstrap-p Method
3.2.2. Bootstrap-t Method
4. Bayesian Analysis
4.1. Bayesian Estimation of under SELF
4.2. Bayesian Estimation of under ELF
4.3. Bayesian Estimation of under LLF
5. Expected Bayesian Analysis
5.1. E-Bayesian Estimation of under SELF
5.2. E-Bayesian Estimation of under ELF
5.3. E-Bayesian Estimation of under LLF
6. Hierarchical Bayesian Estimation
6.1. H-Bayesian Estimation of under SELF
6.2. H-Bayesian Estimation of under ELF
6.3. H-Bayesian Estimation of under LLF
6.4. Highest Posterior Density (HPD) Credible Intervals (CRIs)
7. Simulation Study and Data Analysis
7.1. Simulation Study
Scheme | ||||||
---|---|---|---|---|---|---|
1 | 40 | 15 | 15 | 5 | 5 | (0,…,0,1,1,2,1) (0,…,0,1,1,2,1) |
20 | 10 | 5 | 5 | (0,…,0,1,2,2) (0,…,0,1,2,2) | ||
10 | 20 | 5 | 5 | (0,…,0,1,2,2) (0,…,0,1,2,2) | ||
2 | 60 | 23 | 23 | 7 | 7 | (0,…,0,1,2,2,2) (0,…,0,1,2,2,2) |
30 | 16 | 8 | 6 | (0,…,0,2,2,2,2) (0,…,0,2,2,2,2) | ||
16 | 30 | 6 | 8 | (0,…,0,2,2,2) (0,…,0,2,2,2,2) | ||
3 | 80 | 30 | 30 | 10 | 10 | (1,1,2,1,0,…,1,2,1,1) (1,1,2,1,0,…,1,2,1,1) |
40 | 20 | 14 | 6 | (2,2,2,1,0,…,0,1,2,2,2) (1,1,1,0,…,0,1,1,1) | ||
20 | 40 | 6 | 14 | (1,1,1,0,…,0,1,1,1) (2,2,2,1,0,…0,1,2,2,2) |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 2.1316 | 0.3675 | 2.1096 | 0.2468 | 2.1184 2.1186 | 0.2479 0.2393 | 2.1303 2.1324 | 0.2127 0.1796 | Bayesian |
20 | 10 | 1.9062 | 0.2472 | 2.0919 | 0.2085 | 2.0926 2.0942 | 0.1945 0.1914 | 2.1075 2.1123 | 0.2110 0.2063 | E-Bayesian | |
10 | 20 | 1.8803 | 0.4243 | 2.1068 | 0.3296 | 1.9524 1.9449 | 0.2451 0.2557 | 2.1519 2.1570 | 0.3470 0.3449 | E-Bayesian | |
60 | 23 | 23 | 2.1254 | 0.2442 | 2.0999 | 0.2549 | 1.9859 1.9780 | 0.2123 0.2091 | 2.1227 2.1152 | 0.2425 0.2124 | E-Bayesian |
30 | 16 | 2.0985 | 0.2049 | 2.1071 | 0.2037 | 1.9273 1.9197 | 0.1951 0.1901 | 2.0932 2.0980 | 0.2031 0.2003 | E-Bayesian | |
16 | 30 | 2.1434 | 0.3891 | 2.1207 | 0.2645 | 1.8931 1.8860 | 0.2072 0.2045 | 2.1113 2.1087 | 0.1166 0.1019 | H-Bayesian | |
80 | 30 | 30 | 2.1136 | 0.2258 | 1.9085 | 0.2485 | 1.9216 1.9249 | 0.2143 0.2112 | 2.0962 2.1036 | 0.2040 0.2078 | E-Bayesian |
40 | 20 | 2.1078 | 0.1519 | 2.0905 | 0.1318 | 1.9602 1.9630 | 0.1588 0.1572 | 2.0461 2.0381 | 0.1303 0.1322 | H-Bayesian | |
20 | 40 | 2.1399 | 0.4156 | 2.1530 | 0.3687 | 2.1537 2.1539 | 0.3251 0.3438 | 2.0943 2.1067 | 0.1377 0.1378 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 2.1316 | 0.3675 | 2.1096 | 0.2468 | 2.0687 2.0592 | 0.1897 0.1821 | 2.1296 2.1275 | 0.2076 0.2080 | E-Bayesian |
20 | 10 | 1.9062 | 0.2472 | 2.0919 | 0.2085 | 2.0143 2.0162 | 0.1382 0.1377 | 2.0760 2.0786 | 0.1502 0.1573 | E-Bayesian | |
10 | 20 | 1.8803 | 0.4243 | 2.1068 | 0.3296 | 1.8916 1.8985 | 0.3546 0.3549 | 2.1107 2.1039 | 0.3380 0.3479 | Bayesian | |
60 | 23 | 23 | 2.1254 | 0.2442 | 2.0999 | 0.2549 | 1.9082 1.9106 | 0.2043 0.2013 | 2.0982 2.0901 | 0.2124 0.2301 | E-Bayesian |
30 | 16 | 2.0985 | 0.2049 | 2.1071 | 0.2037 | 1.9439 1.9366 | 0.2714 0.2667 | 2.0956 2.1010 | 0.1884 0.1879 | E-Bayesian | |
16 | 30 | 2.1434 | 0.3891 | 2.1207 | 0.2645 | 1.8203 1.8067 | 0.2962 0.2912 | 2.1189 2.1027 | 0.1978 0.1830 | H-Bayesian | |
80 | 30 | 30 | 2.1136 | 0.2258 | 1.9085 | 0.2485 | 1.9114 1.9149 | 0.2170 0.2140 | 2.0937 2.1025 | 0.2252 0.2267 | E-Bayesian |
40 | 20 | 2.1078 | 0.1519 | 2.0905 | 0.1318 | 1.9012 1.8943 | 0.1528 0.1512 | 2.0286 2.0417 | 0.1282 0.1328 | H-Bayesian | |
20 | 40 | 2.1399 | 0.4156 | 2.1530 | 0.3687 | 2.1560 2.1566 | 0.3763 0.3592 | 2.1097 2.1003 | 0.1128 0.1129 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 2.1316 | 0.3675 | 2.1096 | 0.2468 | 2.0899 2.0806 | 0.1552 0.1384 | 1.9033 1.9002 | 0.2183 0.2048 | E-Bayesian |
20 | 10 | 1.9062 | 0.2472 | 2.0919 | 0.2085 | 1.9982 1.9902 | 0.1373 0.1336 | 1.9589 1.9596 | 0.1540 0.1573 | E-Bayesian | |
10 | 20 | 1.8803 | 0.4243 | 2.1068 | 0.3296 | 1.8974 1.9001 | 0.4364 0.4402 | 1.8978 1.8981 | 0.3942 2.3899 | Bayesian | |
60 | 23 | 23 | 2.1254 | 0.2442 | 2.0999 | 0.2549 | 1.9231 1.9257 | 0.2384 0.2354 | 1.9777 1.9729 | 0.2005 0.2034 | H-Bayesian |
30 | 16 | 2.0985 | 0.2049 | 2.1071 | 0.2037 | 1.9294 1.9223 | 0.2624 0.2779 | 1.88115 1.8821 | 0.2612 0.2681 | E-Bayesian | |
16 | 30 | 2.1434 | 0.3891 | 2.1207 | 0.2645 | 1.8967 1.8992 | 0.3912 0.3878 | 1.8862 1.8879 | 0.2804 0.2832 | Bayesian | |
80 | 30 | 30 | 2.1136 | 0.2258 | 1.9085 | 0.2485 | 1.9185 1.9178 | 0.1911 0.1882 | 1.9192 1.9224 | 0.2528 0.2446 | E-Bayesian |
40 | 20 | 2.1078 | 0.1519 | 2.0905 | 0.1318 | 1.9043 1.9075 | 0.1512 0.1496 | 2.0596 2.0630 | 0.1308 0.1353 | H-Bayesian | |
20 | 40 | 2.1399 | 0.4156 | 2.1530 | 0.3687 | 2.1474 2.1574 | 0.3265 0.3329 | 1.9133 1.9262 | 0.2101 0.2214 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.1003 | 0.1838 | 1.0913 | 0.1027 | 1.1193 1.1148 | 0.1115 0.1106 | 1.1468 1.1226 | 0.1372 0.1327 | Bayesian |
20 | 10 | 1.0576 | 0.1601 | 1.0912 | 0.1186 | 1.0477 1.0533 | 0.1084 0.1074 | 1.1240 1.1219 | 0.1581 0.1623 | E-Bayesian | |
10 | 20 | 1.1408 | 0.2634 | 1.1717 | 0.2732 | 0.8999 0.8958 | 0.1129 0.1058 | 1.1526 1.1578 | 0.2228 0.2178 | E-Bayesian | |
60 | 23 | 23 | 1.1217 | 0.1944 | 1.1131 | 0.1578 | 1.1003 1.1072 | 0.1486 0.1369 | 1.1148 1.1141 | 0.1780 0.1776 | E-Bayesian |
30 | 16 | 1.0917 | 0.11457 | 1.0994 | 0.1185 | 1.0848 1.0801 | 0.1449 0.1433 | 1.1096 1.1075 | 0.1348 0.1388 | E-Bayesian | |
16 | 30 | 1.1888 | 0.2456 | 1.2075 | 0.2338 | 1.1925 1.1883 | 0.2225 0.2201 | 1.1736 1.1739 | 0.2135 0.2269 | H-Bayesian | |
80 | 30 | 30 | 1.1232 | 0.1987 | 1.1311 | 0.1297 | 1.1482 1.1446 | 0.1671 0.1658 | 1.1202 1.1245 | 0.1138 0.1172 | H-Bayesian |
40 | 20 | 0.9247 | 0.1302 | 1.1080 | 0.1239 | 0.9460 0.9524 | 0.1163 0.1148 | 1.0239 1.0268 | 0.1128 0.1078 | H-Bayesian | |
20 | 40 | 1.1438 | 0.2784 | 1.1605 | 0.2697 | 1.1414 1.1356 | 0.1809 0.1758 | 1.2026 1.1932 | 0.2323 0.2443 | E-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.1003 | 0.1838 | 1.0913 | 0.1027 | 1.0796 1.0854 | 0.1088 0.1079 | 1.1831 1.1816 | 0.1290 0.1248 | E-Bayesian |
20 | 10 | 1.0576 | 0.1601 | 1.0912 | 0.1186 | 1.1394 1.1353 | 0.1290 0.1281 | 1.1665 1.1667 | 0.1238 0.1210 | Bayesian | |
10 | 20 | 1.1408 | 0.2634 | 1.1717 | 0.2732 | 0.9792 0.9853 | 0.1233 0.1176 | 1.1976 1.1955 | 0.2335 0.2300 | E-Bayesian | |
60 | 23 | 23 | 1.1217 | 0.1944 | 1.1131 | 0.1578 | 1.1042 1.0997 | 0.1353 0.1436 | 1.0804 1.0911 | 0.1620 0.1694 | H-Bayesian |
30 | 16 | 1.0917 | 0.11457 | 1.0994 | 0.1185 | 1.0213 1.0182 | 0.1418 0.1425 | 1.0812 1.0907 | 0.1279 0.1324 | E-Bayesian | |
16 | 30 | 1.1888 | 0.2456 | 1.2075 | 0.2338 | 1.1797 1.1757 | 0.2108 0.2086 | 1.1570 1.1667 | 0.1902 0.2003 | H-Bayesian | |
80 | 30 | 30 | 1.1232 | 0.1987 | 1.1311 | 0.1297 | 1.1380 1.1347 | 0.1658 0.1653 | 1.0455 1.0448 | 0.1727 0.1871 | H-Bayesian |
40 | 20 | 0.9247 | 0.1302 | 1.1080 | 0.1239 | 0.9740 0.9806 | 0.1120 0.1106 | 1.0234 1.0203 | 0.1339 0.1323 | E-Bayesian | |
20 | 40 | 1.1438 | 0.2784 | 1.1605 | 0.2697 | 0.9638 0.9671 | 0.1578 0.1654 | 1.1224 1.1168 | 0.1650 0.1901 | E-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.1003 | 0.1838 | 1.0913 | 0.1027 | 1.09727 1.08002 | 0.1062 0.1123 | 1.1043 1.0951 | 0.1034 0.1067 | E-Bayesian |
20 | 10 | 1.0576 | 0.1601 | 1.0912 | 0.1186 | 1.0474 1.0465 | 0.0862 0.0973 | 1.0404 1.0430 | 0.1041 0.0936 | E-Bayesian | |
10 | 20 | 1.1408 | 0.2634 | 1.1717 | 0.2732 | 0.8978 0.9012 | 0.1638 0.1579 | 1.0372 1.0348 | 0.1402 0.1587 | H-Bayesian | |
60 | 23 | 23 | 1.1217 | 0.1944 | 1.1131 | 0.1578 | 1.1110 1.1023 | 0.1303 0.1294 | 1.0933 1.0974 | 0.1274 0.1017 | H-Bayesian |
30 | 16 | 1.0917 | 0.11457 | 1.0994 | 0.1185 | 1.0883 1.0898 | 0.1401 0.1398 | 1.0523 1.0638 | 0.0992 0.1274 | H-Bayesian | |
16 | 30 | 1.1888 | 0.2456 | 1.2075 | 0.2338 | 1.0379 1.0381 | 0.2043 0.2396 | 1.0642 1.0778 | 0.2473 1.2106 | E-Bayesian | |
80 | 30 | 30 | 1.1232 | 0.1987 | 1.1311 | 0.1297 | 1.1228 1.1235 | 0.1628 0.1579 | 0.9898 0.9954 | 0.1212 0.1174 | H-Bayesian |
40 | 20 | 0.9247 | 0.1302 | 1.1080 | 0.1239 | 0.9398 0.9378 | 0.1079 0.1022 | 1.0232 1.0250 | 0.1103 0.1080 | H-Bayesian | |
20 | 40 | 1.1438 | 0.2784 | 1.1605 | 0.2697 | 0.9225 0.9279 | 0.1427 0.1529 | 1.1789 1.1829 | 0.2319 0.2296 | E-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 4.1663 | 0.4725 | 4.1064 | 0.4414 | 4.0965 4.0858 | 0.3378 0.3412 | 4.1217 4.1218 | 0.4314 0.4237 | E-Bayesian |
20 | 10 | 3.8763 | 0.3794 | 3.8847 | 0.3358 | 3.8802 3.8544 | 0.4354 0.4401 | 4.1941 4.1809 | 0.4779 0.4649 | Bayesian | |
10 | 20 | 3.8647 | 0.2439 | 3.9082 | 0.2629 | 3.9169 3.9129 | 0.3313 0.3137 | 4.1012 4.1035 | 0.4153 0.3988 | E-Bayesian | |
60 | 23 | 23 | 4.1242 | 0.3815 | 4.1293 | 0.3983 | 4.0857 4.0917 | 0.3735 0.3621 | 4.0566 4.0863 | 0.3280 0.3312 | H-Bayesian |
30 | 16 | 4.2365 | 0.3178 | 3.8594 | 0.2615 | 4.1617 4.1559 | 0.3239 0.3190 | 4.1217 4.1234 | 0.2613 0.2529 | H-Bayesian | |
16 | 30 | 3.8569 | 0.3102 | 3.8924 | 0.2797 | 3.9007 3.9021 | 0.2444 0.2503 | 4.1224 4.1306 | 0.3628 0.3604 | E-Bayesian | |
80 | 30 | 30 | 3.7681 | 0.3148 | 3.8223 | 0.3125 | 3.8469 3.8434 | 0.2884 0.2935 | 4.1125 4.1174 | 0.2189 0.2108 | H-Bayesian |
40 | 20 | 4.2147 | 0.4041 | 4.1542 | 0.3706 | 4.1178 4.1126 | 0.2516 0.2775 | 4.1345 4.1321 | 0.3605 0.3768 | E-Bayesian | |
20 | 40 | 3.8704 | 0.2463 | 3.8951 | 0.2506 | 3.9149 3.9184 | 0.3190 0.3220 | 4.0890 4.0927 | 0.3378 0.3276 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 4.1663 | 0.4725 | 4.1064 | 0.4414 | 4.0831 4.0788 | 0.2848 0.2764 | 4.1256 4.1168 | 0.3752 0.3710 | E-Bayesian |
20 | 10 | 3.8763 | 0.3794 | 3.8847 | 0.3358 | 3.8530 3.8612 | 0.4329 0.4275 | 4.1303 4.1295 | 0.3854 0.3253 | Bayesian | |
10 | 20 | 3.8647 | 0.2439 | 3.9082 | 0.2629 | 3.8960 3.8994 | 0.1453 0.1581 | 4.1041 4.1019 | 0.2415 0.2482 | E-Bayesian | |
60 | 23 | 23 | 4.1242 | 0.3815 | 4.1293 | 0.3983 | 4.0739 4.0810 | 0.4334 0.4130 | 4.0533 4.0675 | 0.3940 0.4003 | H-Bayesian |
30 | 16 | 4.2365 | 0.3178 | 3.8594 | 0.2615 | 4.1055 4.0981 | 0.3432 0.3301 | 4.0896 4.0920 | 0.2761 0.2724 | H-Bayesian | |
16 | 30 | 3.8569 | 0.3102 | 3.8924 | 0.2797 | 3.9619 3.9565 | 0.2952 0.2828 | 4.0899 4.0882 | 0.3127 0.3238 | E-Bayesian | |
80 | 30 | 30 | 3.7681 | 0.3148 | 3.8223 | 0.3125 | 3.8092 3.7971 | 0.3486 0.3340 | 4.0930 4.1029 | 0.3026 0.3248 | H-Bayesian |
40 | 20 | 4.2147 | 0.4041 | 4.1542 | 0.3706 | 4.1821 4.2086 | 0.3515 0.3487 | 4.1115 4.1262 | 0.2442 0.2792 | H-Bayesian | |
20 | 40 | 3.8704 | 0.2463 | 3.8951 | 0.2506 | 3.9033 3.8924 | 0.2204 0.2634 | 4.0510 4.0479 | 0.2044 0.1978 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 4.1663 | 0.4725 | 4.1064 | 0.4414 | 4.0948 4.0960 | 0.3552 0.3541 | 4.1424 4.1470 | 0.3932 0.4009 | E-Bayesian |
20 | 10 | 3.8763 | 0.3794 | 3.8847 | 0.3358 | 3.8703 3.8867 | 0.4353 0.3922 | 4.1580 4.1515 | 0.3646 0.3579 | Bayesian | |
10 | 20 | 3.8647 | 0.2439 | 3.9082 | 0.2629 | 3.9151 3.9188 | 0.2539 0.2558 | 4.1147 4.1088 | 0.3356 0.3218 | E-Bayesian | |
60 | 23 | 23 | 4.1242 | 0.3815 | 4.1293 | 0.3983 | 4.0996 4.1078 | 0.2940 0.2749 | 4.1030 4.0975 | 0.3003 0.3187 | E-Bayesian |
30 | 16 | 4.2365 | 0.3178 | 3.8594 | 0.2615 | 4.1382 4.1449 | 0.2248 0.2380 | 4.1208 4.1252 | 0.2197 0.2119 | H-Bayesian | |
16 | 30 | 3.8569 | 0.3102 | 3.8924 | 0.2797 | 3.9138 3.9165 | 0.2248 0.2527 | 4.0941 4.0897 | 0.3228 0.3340 | E-Bayesian | |
80 | 30 | 30 | 3.7681 | 0.3148 | 3.8223 | 0.3125 | 3.8463 3.8452 | 0.3203 0.3312 | 4.1051 4.1046 | 0.2732 0.2825 | H-Bayesian |
40 | 20 | 4.2147 | 0.4041 | 4.1542 | 0.3706 | 4.1073 4.1154 | 0.2754 0.2831 | 4.1343 4.1430 | 0.3541 0.3306 | E-Bayesian | |
20 | 40 | 3.8704 | 0.2463 | 3.8951 | 0.2506 | 3.9249 3.9211 | 0.2810 0.2717 | 4.0749 4.0672 | 0.1620 0.1521 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.8896 | 0.2261 | 2.1012 | 0.2662 | 1.9012 1.9065 | 0.1923 0.1713 | 2.1217 2.1315 | 0.3897 0.3405 | E-Bayesian |
20 | 10 | 1.8426 | 0.3504 | 1.8458 | 0.3216 | 1.8361 1.8327 | 0.3661 0.3621 | 2.1612 2.1586 | 0.4151 0.4164 | Bayesian | |
10 | 20 | 2.1361 | 0.2964 | 1.9044 | 0.2371 | 2.0502 2.0318 | 0.1874 0.1916 | 2.0923 2.0982 | 0.3362 0.3417 | E-Bayesian | |
60 | 23 | 23 | 2.1481 | 0.2030 | 2.1477 | 0.2242 | 1.8998 1.9050 | 0.2087 0.1961 | 2.1033 2.1027 | 0.2473 0.2523 | E-Bayesian |
30 | 16 | 2.1651 | 0.2893 | 2.1778 | 0.3002 | 2.1414 2.1224 | 0.2579 0.2637 | 2.1374 2.1366 | 0.2225 0.2352 | H-Bayesian | |
16 | 30 | 2.1330 | 0.2160 | 2.1237 | 0.1881 | 1.9286 1.9244 | 0.2212 0.2098 | 2.0864 2.0758 | 0.2974 0.2736 | E-Bayesian | |
80 | 30 | 30 | 2.1331 | 0.1842 | 2.1388 | 0.1667 | 2.1481 2.1373 | 0.1644 0.1693 | 2.1038 2.1082 | 0.1346 0.1338 | H-Bayesian |
40 | 20 | 2.1878 | 0.2935 | 2.1801 | 0.3034 | 2.1626 2.1708 | 0.3323 0.3105 | 2.1826 2.1756 | 0.3526 0.3781 | E-Bayesian | |
20 | 40 | 2.1176 | 0.2165 | 2.1208 | 0.1508 | 2.1201 2.1188 | 0.1237 0.1200 | 2.0438 2.0386 | 0.1078 0.1056 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.8896 | 0.2261 | 2.1012 | 0.2662 | 1.9159 1.9019 | 0.2176 0.2136 | 2.1008 2.1011 | 0.2928 0.2613 | E-Bayesian |
20 | 10 | 1.8426 | 0.3504 | 1.8458 | 0.3216 | 1.9088 1.9027 | 0.2637 0.2597 | 2.1181 2.1202 | 0.3377 0.3217 | E-Bayesian | |
10 | 20 | 2.1361 | 0.2964 | 1.9044 | 0.2371 | 2.0558 2.0582 | 0.2088 2.2134 | 2.0945 2.0979 | 0.2798 0.2808 | E-Bayesian | |
60 | 23 | 23 | 2.1481 | 0.2030 | 2.1477 | 0.1942 | 1.9179 1.9043 | 0.1815 0.1696 | 2.0919 2.0902 | 0.1577 0.1519 | H-Bayesian |
30 | 16 | 2.1651 | 0.2893 | 2.1778 | 0.3002 | 1.9852 1.9676 | 0.2918 0.3069 | 2.1355 2.1595 | 0.3353 0.3459 | E-Bayesian | |
16 | 30 | 2.1330 | 0.2160 | 2.1237 | 0.1881 | 1.8873 1.8942 | 0.1987 0.1879 | 2.0558 2.0562 | 0.2434 0.2106 | H-Bayesian | |
80 | 30 | 30 | 2.1331 | 0.1842 | 2.1388 | 0.1667 | 2.1234 2.1207 | 0.1640 0.1629 | 2.1025 2.1085 | 0.1493 0.1342 | H-Bayesian |
40 | 20 | 2.1878 | 0.2935 | 2.1801 | 0.3034 | 2.1570 2.1468 | 0.2119 0.2117 | 2.1654 2.1635 | 0.2360 0.2387 | E-Bayesian | |
20 | 40 | 2.1176 | 0.2165 | 2.1208 | 0.1508 | 2.0884 2.0981 | 0.2137 0.2104 | 1.9608 1.9799 | 0.1663 0.1648 | H-Bayesian |
Best Estimator | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AE | MSE | AE | MSE | AE | MSE | AE | MSE | ||||
40 | 15 | 15 | 1.8896 | 0.2261 | 2.1012 | 0.2662 | 1.9385 1.9249 | 0.1966 0.2057 | 1.9063 1.9148 | 0.3635 0.3901 | E-Bayesian |
20 | 10 | 1.8426 | 0.3504 | 1.8458 | 0.3216 | 1.9036 1.9161 | 0.2558 0.2519 | 1.8968 1.8983 | 0.3863 0.3866 | E-Bayesian | |
10 | 20 | 2.1361 | 0.2964 | 1.9044 | 0.2371 | 2.1150 2.1271 | 0.2923 0.3013 | 1.9023 1.9096 | 0.3463 0.3384 | Bayesian | |
60 | 23 | 23 | 2.1481 | 0.2030 | 2.1477 | 0.1942 | 1.8912 1.9080 | 0.2585 0.2474 | 1.9187 1.9203 | 0.1410 0.1373 | H-Bayesian |
30 | 16 | 2.1651 | 0.2893 | 2.1778 | 0.3002 | 1.8708 1.8839 | 0.3696 0.3570 | 1.9764 1.9814 | 0.2338 0.2282 | H-Bayesian | |
16 | 30 | 2.1330 | 0.2160 | 2.1237 | 0.1881 | 1.9617 1.9489 | 0.1778 0.1675 | 1.9212 1.9334 | 0.2302 0.2123 | E-Bayesian | |
80 | 30 | 30 | 2.1331 | 0.1842 | 2.1388 | 0.1667 | 2.0855 2.0885 | 0.1918 0.1907 | 2.1242 2.1425 | 0.1860 0.1845 | E-Bayesian |
40 | 20 | 2.1878 | 0.2935 | 2.1801 | 0.3034 | 2.1177 2.1084 | 0.2436 0.2254 | 1.8713 1.8687 | 0.3313 0.3436 | E-Bayesian | |
20 | 40 | 2.1176 | 0.2165 | 2.1208 | 0.1508 | 2.0792 2.0732 | 0.2301 0.2437 | 1.9387 19403 | 0.1172 0.1137 | H-Bayesian |
MLE | Boot-p | Boot-t | Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|---|---|---|
40 | 15 | 15 | 2.2650 96.1 | 1.6267 96.2 | 1.6045 96.3 | 1.5098 96.3 | 1.5104 96.5 | 1.5087 96.5 | 1.6801 96.7 | 1.6646 96.8 |
20 | 10 | 1.7281 96.4 | 1.5522 96.5 | 1.5475 96.5 | 1.4935 96.6 | 1.5012 96.8 | 1.5109 96.7 | 1.6382 96.6 | 1.6262 96.5 | |
10 | 20 | 2.3154 96.1 | 1.6929 96.3 | 1.6869 96.2 | 1.55720 96.2 | 1.5467 96.5 | 1.5523 96.4 | 1.5128 96.6 | 1.5057 96.7 | |
60 | 23 | 23 | 1.7720 96.1 | 1.5697 96.3 | 1.6001 96.2 | 1.4564 96.5 | 1.5028 96.6 | 1.4875 96.6 | 1.5016 96.5 | 1.5405 96.4 |
30 | 16 | 1.6327 96.4 | 1.5979 96.5 | 1.6007 96.4 | 1.4209 96.8 | 1.3883 97.0 | 1.4078 96.9 | 1.2468 97.0 | 1.2480 97.1 | |
16 | 30 | 2.0635 96.0 | 1.8008 96.2 | 1.7902 96.1 | 1.5702 96.3 | 1.6056 96.4 | 1.6123 96.5 | 1.6058 96.3 | 1.5735 96.3 | |
80 | 30 | 30 | 1.5828 96.3 | 1.6270 96.6 | 1.6353 96.7 | 1.5828 96.8 | 1.5730 96.7 | 1.5854 96.8 | 1.3449 97.2 | 1.3156 97.3 |
40 | 20 | 1.3788 96.8 | 1.5905 97.0 | 1.6032 96.9 | 1.4168 97.1 | 1.4140 97.0 | 1.3977 96.9 | 1.2802 97.4 | 1.2919 97.5 | |
20 | 40 | 1.8671 96.2 | 1.6587 96.4 | 1.6462 96.6 | 1.6249 96.6 | 1.5897 96.5 | 1.6117 96.6 | 1.4772 97.0 | 1.5190 97.1 |
MLE | Boot-p | Boot-t | Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|---|---|---|
40 | 15 | 15 | 1.6723 96.4 | 1.4043 96.6 | 1.4103 96.5 | 1.3593 96.8 | 1.4187 96.8 | 1.4298 96.7 | 1.3932 96.6 | 1.4437 96.7 |
20 | 10 | 1.3693 96.6 | 1.3354 96.7 | 1.3168 96.7 | 1.1784 97.2 | 1.2657 97.0 | 1.2701 96.9 | 1.2939 96.8 | 1.3024 96.9 | |
10 | 20 | 1.7863 96.3 | 1.6423 96.4 | 1.5858 96.3 | 1.4460 96.6 | 1.3334 96.9 | 1.3385 96.8 | 1.4606 96.6 | 1.4642 96.6 | |
60 | 23 | 23 | 1.2831 96.4 | 1.1406 96.5 | 1.1318 96.6 | 1.2003 96.7 | 1.1975 97.1 | 1.1893 97.0 | 1.2199 97.1 | 1.2108 96.9 |
30 | 16 | 1.1871 96.5 | 1.1650 96.7 | 1.1745 96.8 | 1.0954 96.9 | 1.0876 97.3 | 1.0933 97.4 | 1.1456 97.3 | 1.1554 97.2 | |
16 | 30 | 1.5851 96.4 | 1.2345 96.6 | 1.2305 96.7 | 1.2202 96.6 | 1.2001 96.8 | 1.1987 96.9 | 1.3907 96.9 | 1.3896 96.8 | |
80 | 30 | 30 | 1.0901 96.7 | 1.1267 96.8 | 1.1197 96.9 | 1.0956 97.2 | 1.1063 97.1 | 1.1085 97.0 | 1.0688 97.2 | 1.0693 97.3 |
40 | 20 | 0.9497 96.8 | 1.0902 97.1 | 1.0790 97.2 | 1.0812 97.4 | 1.0743 97.3 | 1.0756 97.3 | 0.9454 97.4 | 0.9588 97.4 | |
20 | 40 | 1.3015 96.5 | 1.1716 96.5 | 1.1569 96.7 | 1.1277 97.1 | 1.1376 97.0 | 1.1297 96.9 | 1.3364 97.0 | 1.3992 97.1 |
MLE | Boot-p | Boot-t | Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|---|---|---|
40 | 15 | 15 | 4.6865 95.6 | 3.4313 95.8 | 3.4951 95.9 | 2.8982 96.1 | 2.7869 96.0 | 2.8065 95.9 | 3.0162 95.7 | 3.0273 95.7 |
20 | 10 | 3.7323 95.8 | 3.0256 96.0 | 3.0088 96.0 | 2.3586 96.2 | 2.4067 96.1 | 2.4198 96.1 | 3.4455 95.8 | 3.1465 95.7 | |
10 | 20 | 3.2754 95.9 | 2.9521 96.2 | 2.9771 96.1 | 2.1729 96.3 | 2.2471 96.2 | 2.3089 96.2 | 2.8502 95.9 | 2.8535 96.0 | |
60 | 23 | 23 | 3.6721 96.2 | 3.3443 96.3 | 3.3672 96.5 | 2.6876 96.4 | 2.7013 96.7 | 2.4987 96.8 | 2.8644 96.7 | 2.7576 96.8 |
30 | 16 | 4.4871 96.0 | 3.4678 96.2 | 3.5389 96.3 | 2.6006 96.4 | 2.5978 96.6 | 2.5409 96.6 | 2.9116 96.5 | 2.9149 96.5 | |
16 | 30 | 3.0036 96.4 | 3.0457 96.5 | 3.0056 96.7 | 2.4792 96.6 | 2.385 96.9 | 2.455 97.0 | 2.4469 97.0 | 2.4607 97.1 | |
80 | 30 | 30 | 2.8167 96.5 | 2.9564 96.5 | 2.8902 96.7 | 2.8167 96.8 | 2.8637 96.9 | 2.8232 97.0 | 2.3535 97.2 | 2.2528 97.3 |
40 | 20 | 3.0092 96.4 | 3.0532 96.4 | 3.1671 96.5 | 2.9869 96.7 | 3.0011 96.7 | 2.9945 96.8 | 2.8054 96.9 | 2.7909 97.1 | |
20 | 40 | 2.5920 96.6 | 2.8737 96.9 | 2.7877 97.1 | 2.6943 97.2 | 2.7089 97.3 | 2.6880 97.3 | 2.2513 97.4 | 2.1863 97.5 |
MLE | Boot-p | Boot-t | Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|---|---|---|
40 | 15 | 15 | 2.7919 95.2 | 2.0592 96.4 | 2.0366 96.3 | 1.9583 96.5 | 2.2453 96.3 | 2.2567 96.3 | 2.2574 96.2 | 2.2464 96.1 |
20 | 10 | 2.8595 95.1 | 2.3604 95.4 | 2.3537 95.8 | 2.3724 96.0 | 2.3434 96.2 | 2.3512 96.2 | 2.5667 96.0 | 26456 95.9 | |
10 | 20 | 2.4929 95.4 | 2.2789 95.7 | 2.2786 95.8 | 2.4052 95.9 | 2.1564 96.5 | 2.1677 96.4 | 2.2062 96.2 | 2.1921 96.3 | |
60 | 23 | 23 | 2.526 96.4 | 2.2596 96.5 | 2.2972 96.7 | 1.9104 96.9 | 1.9234 96.6 | 1.9097 96.6 | 2.0271 96.7 | 2.0414 96.6 |
30 | 16 | 2.6553 96.2 | 2.5979 96.4 | 2.5328 96.5 | 2.0071 96.7 | 2.0198 96.8 | 2.0210 96.7 | 1.9900 96.8 | 2.0108 96.7 | |
16 | 30 | 2.3803 96.6 | 2.2180 96.7 | 2.2275 96.8 | 1.8775 96.9 | 1.9034 96.9 | 1.8967 96.8 | 1.8607 97.1 | 1.8715 97.0 | |
80 | 30 | 30 | 2.2274 96.7 | 2.2970 96.8 | 2.3097 96.7 | 2.2273 97.1 | 2.2456 96.9 | 2.2428 96.8 | 2.0538 97.2 | 2.0419 97.0 |
40 | 20 | 2.6615 96.2 | 2.3904 96.4 | 2.3464 96.4 | 2.2612 96.7 | 2.3014 96.4 | 2.2951 96.5 | 2.1447 96.7 | 2.1797 96.8 | |
20 | 40 | 1.9461 96.8 | 2.2842 96.9 | 2.2096 97.0 | 2.1535 97.4 | 2.1837 97.3 | 2.1756 97.3 | 1.8597 97.4 | 1.7808 97.5 |
Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|
40 | 15 | 15 | 1.7864 96.7 | 1.6341 96.8 | 1.6402 96.8 | 1.7754 96.7 | 1.8354 96.7 |
20 | 10 | 1.6324 96.8 | 1.5776 96.9 | 1.5809 97.0 | 1.6393 96.9 | 1.6238 96.9 | |
10 | 20 | 1.8721 96.8 | 1.9467 96.7 | 1.9387 96.7 | 2.0227 96.6 | 2.0178 96.6 | |
60 | 23 | 23 | 1.5403 96.7 | 1.4650 96.8 | 1.4701 96.7 | 1.4806 96.6 | 1.4776 96.6 |
30 | 16 | 1.3917 96.9 | 1.2199 97.0 | 1.2740 97.1 | 1.3492 96.8 | 1.3406 96.7 | |
16 | 30 | 1.6362 96.5 | 1.5267 96.7 | 1.5249 96.8 | 1.4258 97.1 | 1.4375 97.1 | |
80 | 30 | 30 | 1.3275 96.7 | 1.3974 96,6 | 1.2896 96.7 | 1.2661 97.2 | 1.2470 97.4 |
40 | 20 | 1.1935 97.1 | 1.1890 97.2 | 1.2011 97.0 | 1.1279 97.5 | 1.1489 97.6 | |
20 | 40 | 1.5047 96.6 | 1.5104 96.6 | 1.5098 96.5 | 1.3785 97.2 | 1.3088 97.3 |
Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|
40 | 15 | 15 | 1.2443 96.2 | 1.2067 96.5 | 1.1999 96.8 | 1.1934 96.9 | 1.1662 97.0 |
20 | 10 | 1.1185 96.6 | 1.1367 96.8 | 1.1289 97.0 | 1.0630 97.0 | 1.0445 97.1 | |
10 | 20 | 1.3060 96.0 | 1.2567 96.4 | 1.2481 96.7 | 1.2342 96.8 | 1.1994 96.9 | |
60 | 23 | 23 | 1.1831 96.7 | 1.0165 96.9 | 1.0189 96.8 | 1.1312 97.0 | 1.1338 97.1 |
30 | 16 | 1.1788 96.9 | 0.8824 97.1 | 0.8743 97.2 | 1.0824 97.1 | 1.0943 97.2 | |
16 | 30 | 1.1977 96.7 | 1.1876 96.9 | 1.1901 96.8 | 1.1562 97.0 | 1.1679 97.1 | |
80 | 30 | 30 | 1.0754 96.9 | 1.0854 97.0 | 1.0812 97.1 | 1.1258 97.1 | 1.1514 97.3 |
40 | 20 | 1.0660 97.2 | 1.0667 97.1 | 1.0589 97.2 | 1.0289 97.2 | 1.0174 97.5 | |
20 | 40 | 1.1099 96.8 | 1.1123 96.9 | 1.1143 97.0 | 1.1638 97.1 | 1.1769 97.2 |
Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|
40 | 15 | 15 | 2.2610 96.7 | 2.2089 96.8 | 2.1998 96.9 | 2.4482 96.7 | 2.4560 96.7 |
20 | 10 | 2.3346 96.6 | 2.4067 96.6 | 2.4145 96.5 | 2.5248 96.4 | 2.5436 96.3 | |
10 | 20 | 2.2429 96.8 | 2.1698 97.2 | 2.1704 97.3 | 2.2213 97.1 | 2.2357 97.0 | |
60 | 23 | 23 | 2.3493 96.5 | 2.2719 96.9 | 2.2987 96.8 | 2.2024 97.0 | 2.1932 97.1 |
30 | 16 | 2.3732 96.3 | 2.3545 96.8 | 2.3499 96.7 | 2.2676 96.9 | 2.2569 96.9 | |
16 | 30 | 2.2214 96.8 | 2.1978 97.0 | 2.2054 97.0 | 2.0785 97.3 | 2.0804 97.4 | |
80 | 30 | 30 | 2.3141 96.7 | 2.2270 97.0 | 2.2320 97.1 | 2.1084 97.4 | 1.9397 97.6 |
40 | 20 | 2.4359 96.4 | 2.3976 96.9 | 2.4012 96.9 | 2.3392 97.3 | 2.3285 97.4 | |
20 | 40 | 2.1551 96.9 | 2.1485 97.2 | 2.1432 97.3 | 2.0285 97.5 | 1.9038 97.7 |
Bay | E-Bay1 | E-Bay2 | H-Bay1 | H-Bay2 | |||
---|---|---|---|---|---|---|---|
40 | 15 | 15 | 1.8864 96.5 | 1.6887 96.8 | 1.7014 96.7 | 2.1704 95.9 | 2.1615 96.0 |
20 | 10 | 2.4531 95.3 | 2.2454 95.7 | 2.3089 96.0 | 2.3015 95.7 | 2.2925 95.6 | |
10 | 20 | 2.0525 96.2 | 1.9001 96.6 | 1.8976 96.6 | 2.0185 96.3 | 1.9726 96.4 | |
60 | 23 | 23 | 2.5403 96.1 | 2.3867 96.1 | 2.4009 96.0 | 1.8808 96.6 | 1.8783 96.8 |
30 | 16 | 2.6916 95.9 | 2.4563 96.0 | 2.5012 95.9 | 1.9384 96.5 | 1.9467 96.7 | |
16 | 30 | 2.3362 96.2 | 2.1554 96.4 | 2.1398 96.5 | 1.6731 96.9 | 1.6643 97.0 | |
80 | 30 | 30 | 1.6275 97.0 | 1.6267 96.9 | 1.6358 96.8 | 1.5221 97.1 | 1.5097 97.2 |
40 | 20 | 2.2935 96.4 | 2.1152 96.6 | 2.0147 96.6 | 1.8577 96.8 | 1.8449 96.9 | |
20 | 40 | 1.5047 97.2 | 1.5107 97.3 | 1.5132 97.4 | 1.4590 97.6 | 1.4424 97.7 |
7.2. Results Analysis
- (1)
- From Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13, we observe that the AEs of are close to the true values and the MSEs of decrease as increasing for all estimates. This indicates that the number of failure values of test units affect the estimation accuracy of parameters.
- (2)
- From Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13, the Bayesian performances are better than that of MLE, and the E-Bayesian or H-Bayesian performances are better than that of the Bayesian for fixed , , , and censoring scheme. The results show that the Bayesian method improves the estimation accuracy of model parameters due to combining the prior information.
- (3)
- From Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13, we can infer that the H-BEs are the best in all cases of the larger sample sizes, and the E-BEs are the best in all cases of the smaller sample sizes based on different loss functions.
- (4)
- From Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12 and Table 13, we observe that the proportion of failure values under the stress is greater than the one under the stress , the estimated values of the parameters are close to the true values, and vice versa. This shows that the pre-fixed time in the test also affects the estimation accuracy of model parameters.
- (5)
- (6)
8. An Illustrative Example
First Stress Level | (0.00638,2), (0.01442,1), (0.01738,1), (0.02380,2), (0.04067,2), (0.05375,2), (0.06667,1), (0.08122,1), (0.11568,2), (0.15354,2) |
Second Stress Level | (0.17226,1), (0.18334,2), (0.20501,2), (0.21434,1), (0.21518,2), (0.22165,1), (0.23910,1), (0.24391,1), (0.26104,2), (0.32582,2), (0.34505,2), (0.65557,2) |
Parameter | MLE | BE | EBE1 | EBE2 | HBE1 | HBE2 |
---|---|---|---|---|---|---|
1.09 | 0.968 | 1.02 | 0.966 | 1.016 | 1.021 | |
1.62 | 1.516 | 1.47 | 1.485 | 1.511 | 1.520 | |
3.21 | 2.83 | 2.92 | 2.894 | 3.052 | 3.092 |
Parameter | MLE | BE | EBE1 | EBE2 | HBE1 | HBE2 |
---|---|---|---|---|---|---|
2.127 | 1.709 | 1.712 | 1.699 | 1.377 | 1.409 | |
2.605 | 2.194 | 2.201 | 2.217 | 1.514 | 1.521 | |
3.529 | 3.025 | 3.125 | 3.221 | 2.546 | 2.691 | |
3.268 | 2.997 | 3.009 | 3.014 | 1.795 | 1.802 |
Parameter | BE | EBE1 | EBE2 | HBE1 | HBE2 |
---|---|---|---|---|---|
1.621 | 1.635 | 1.659 | 1.346 | 1.361 | |
2.158 | 2.098 | 2.117 | 1.481 | 1.457 | |
2.807 | 2.765 | 2.769 | 2.184 | 2.201 | |
2.679 | 2.544 | 2.608 | 1.685 | 1.595 |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Accelerated life testing |
C-SALT | Constant-stress accelerated life testing |
S-SALT | Step-stress accelerated life testing |
CEM | Cumulative exposure model |
MLE | Maximum likelihood estimation |
BE | Bayesian estimation |
LF | Loss function |
H-BE | Hierarchical Bayesian estimation |
E-BE | Expected Bayesian estimation |
CI | Confidence interval |
BCI | Bootstrap confidence interval |
CDF | Cumulative distribution function |
Probability density function | |
PT-IIC | Progressively Type-II censored |
ACI | Asymptotic confidence interval |
BPCI | Bootstrap-p confidence interval |
BTCI | Bootstrap-t confidence interval |
SELF | Squared error loss function |
ELF | Entropy loss function |
LLF | Linear-exponential loss function |
H-P | Hierarchical prior |
HPD | Highest posterior density |
CRI | Credible interval |
AE | Average Estimate |
MSE | Mean square error |
AL | Average length |
CP | Coverage probability |
Appendix A
References
- Nelson, W.; Meeker, W.Q. Theory for optimum accelerated censored life tests for Weibull and extreme value distribution. Technometrics 1978, 20, 171–177. [Google Scholar] [CrossRef]
- Nelson, W.B. Accelerated Testing: Statistical Models, Test Plans and Data Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Bagdonaviius, V.; Nikulin, M. Accelerated Life Models: Modeling and Statistical Analysis; Chapman & Hall: New York, NY, USA, 2002. [Google Scholar]
- Sedyakin, N.M. On one physical principle in reliability theory. Tech. Cybern. 1996, 3, 80–87. [Google Scholar]
- Balakrishnan, N.; Xie, Q. Exact inference for a simple step stress model with type-II hybrid censored data from the exponential distribution. J. Stat. Plan. Infer. 2007, 137, 2543–2563. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Xie, Q. Exact inference for a simple step stress model with type-I hybrid censored data from the exponential distribution. J. Stat. Plan. Infer. 2007, 137, 3268–3290. [Google Scholar] [CrossRef]
- Lee, H.M.; Wu, J.W.; Lei, C.L. Assessing the lifetime performance index of exponential products with step-stress accelerated life-testing data. IEEE Trans. Reliab. 2013, 62, 296–304. [Google Scholar] [CrossRef]
- Tang, Y.C.; Guan, Q.; Xu, P.R.; Xu, H. Optimum design for type-I step-stress accelerated life tests of two-parameter Weibull distribution. Commun. Stat.-Theory Methods 2012, 41, 3863–3877. [Google Scholar] [CrossRef]
- Cox, D.R. The analysis of exponentially distributed lifetimes with two types of failure. J. R. Statist. Soc. 1959, 21, 411–421. [Google Scholar]
- David, H.A.; Moeschberger, M.L.; Buckland, W.R. The Theory of Competing Risks; Griffin: London, UK, 1978. [Google Scholar]
- Balakrishnan, N.; Han, D. Exact inference for a simple step-stress model with competing risks for a failure from exponential distribution under Type-Ⅱcensoring. J. Stat. Plan. infer. 2008, 138, 4172–4186. [Google Scholar] [CrossRef]
- Beltrami, J. Competing risk in step-stress model with lagged effect. Int. J. Math. 2015, 16, 1–24. [Google Scholar]
- Beltrami, J. Weibull lagged effect step-stress model with competing risks. Commun. Stat.-Theory Methods 2017, 46, 5419–5442. [Google Scholar] [CrossRef]
- Liu, F.; Shi, Y.M. Inference for a simple step-stress model with progressively censored competing risks data from Weibull distribution. Commun. Stat.-Theory Methods 2017, 46, 7238–7255. [Google Scholar] [CrossRef]
- Srivastava, P.W.; Sharma, D. Optimum time-censored step-stress PALTSP with competing causes of failure using tampered failure rate model. Int. J. Pre. Eng. Man. 2017, 11, 63–88. [Google Scholar]
- Xu, A.; Tang, Y.; Guan, Q. Bayesian analysis of masked data in step-stress accelerated life testing. Commun. Stat.–Simul. Comput. 2014, 43, 2016–2030. [Google Scholar] [CrossRef]
- Zhang, C.F.; Shi, Y.M.; Wu, M. Statistical inference for competing risks model in step-stress partially accelerated life test with progressively Type-Ⅰhybrid censored Weibull life data. J. Comput. Appl. Math. 2016, 297, 65–74. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Y.M. Statistical Prediction of failure times under generalized progressive hybrid censoring in a simple step-stress accelerated competing risks model. J. Syst. Eng. Elect. 2017, 28, 282–291. [Google Scholar]
- Ganguly, A.; Kundu, D. Analysis of simple step stress model in presence of competing risks. J. Stat. Comput. Sim. 2016, 86, 1989–2006. [Google Scholar] [CrossRef]
- Han, D.; Kundu, D. Inference for a step-stress model with competing risks for failure from the generalized exponential distribution under Type-Ⅰcensoring. IEEE Trans. Reliab. 2015, 64, 31–43. [Google Scholar] [CrossRef]
- Han, D.; Ng, H.K.T. Asymptotic comparison between constant-stress testing and step-stress testing for Type-Ⅰcensored data from exponential distribution. Commun. Stat.-Theory Methods 2014, 43, 2384–2394. [Google Scholar] [CrossRef]
- Han, D.; Balakrishnan, N. Inference for a simple step-stress model with competing risks for failure from exponential distribution under time constraint. Comput. Stat. Data Anal. 2010, 54, 2066–2081. [Google Scholar] [CrossRef]
- Varhgese, S.; Vaidyanathan, V.S. Parameter estimation of Lindley step stress model with independent competing risk under type-Ⅰcensoring. Commun. Stat.-Theory Methods 2019, 49, 3026–3043. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, W.S. Modeling and planning of step-stress accelerated life tests with independent competing risks. IEEE Trans. Reliab. 2011, 60, 712–720. [Google Scholar] [CrossRef]
- Abu-Zinadah, H.H.; Sayed-Ahmed, N. Competing Risks Model with Partially Step-Stress Accelerate Life Tests in Analysis Lifetime Chen Data under Type-ⅡCensoring Scheme. Open Phys. 2019, 17, 192–199. [Google Scholar] [CrossRef]
- Aljohani, H.M.; Alfar, N.M. Estimations with step-stress partially accelerated life tests for competing risks Burr XⅡlifetime model under type-Ⅱcensored data. Alexandria Eng. J. 2020, 59, 1171–1180. [Google Scholar] [CrossRef]
- Lindley, D.V.; Smith, A.F.M. Bayes estimation for the linear model. J. R. Stat. Soc. 1972, 34, 1–41. [Google Scholar]
- Han, M. The structure of hierarchical prior distribution and its applications. Oper. Res. Man. 1997, 63, 31–40. [Google Scholar]
- Han, M. Expected Bayesian Method for Forecast of Security Investment. J. Oper. Res. Man Sci. 2005, 14, 89–102. [Google Scholar]
- Han, M. E-Bayesian and hierarchical Bayesian estimation of failure rate. Appl. Math Model 2011, 33, 1915–1922. [Google Scholar] [CrossRef]
- Han, M. E-Bayesian and hierarchical Bayesian estimation for the system reliability parameter. Commun. Stat.-Theory Methods 2017, 46, 1606–1620. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Abdul-Sathar, E.I.; Athira Krishnan, R.B. E-Bayesian and Hierarchical Bayesian Estimation for the Shape Parameter and Reversed Hazard Rate of Power Function Distribution Under Different Loss Functions. J. Indian Soc. Probab. Stat. 2019, 20, 227–253. [Google Scholar] [CrossRef]
- Shahram, Y.S. Estimating E-Bayesian and hierarchial bayesian of scalar parameter of gompertz distribution under type Ⅱ censoring schemes based on fuzzy data. Commun. Stat.-Theory Methods 2019, 48, 831–840. [Google Scholar]
- Chen, M.H.; Shao, Q.M. Monte Carlo estimation of Bayesian credible and PHD intervals. J. Comput. Graph Stat. 1999, 8, 69–92. [Google Scholar]
- Wang, Y.C.; Emura, T.; Fan, T.H.; Lo, S.M.; Wilke, R.A. Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Qual. Reliab. Eng. Int. 2020, 36, 1622–1638. [Google Scholar] [CrossRef]
- Michimae, H.; Emura, T. Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies. Mathematics 2022, 10, 2163. [Google Scholar] [CrossRef]
- Mood, A.; Graybill, F.A.; Boes, D. Introduction to the Theory of Statistics: McGraw-Hill Series in Probability and Statistics; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Dey, D.K.; Gosh, M.; Srinivasan, C. Simultaneous estimation of parameter under entropy loss. J. Stat. Plan. Infer. 1987, 15, 347–363. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian estimation and Prediction using Asymmetric loss Function. J. Am. Stat. Assoc. 1986, 81, 446–451. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yan, Z.; Chen, Y. E-Bayesian and H-Bayesian Inferences for a Simple Step-Stress Model with Competing Failure Model under Progressively Type-II Censoring. Entropy 2022, 24, 1405. https://doi.org/10.3390/e24101405
Wang Y, Yan Z, Chen Y. E-Bayesian and H-Bayesian Inferences for a Simple Step-Stress Model with Competing Failure Model under Progressively Type-II Censoring. Entropy. 2022; 24(10):1405. https://doi.org/10.3390/e24101405
Chicago/Turabian StyleWang, Ying, Zaizai Yan, and Yan Chen. 2022. "E-Bayesian and H-Bayesian Inferences for a Simple Step-Stress Model with Competing Failure Model under Progressively Type-II Censoring" Entropy 24, no. 10: 1405. https://doi.org/10.3390/e24101405
APA StyleWang, Y., Yan, Z., & Chen, Y. (2022). E-Bayesian and H-Bayesian Inferences for a Simple Step-Stress Model with Competing Failure Model under Progressively Type-II Censoring. Entropy, 24(10), 1405. https://doi.org/10.3390/e24101405