# Coherent Superpositions of Photon Creation Operations and Their Application to Multimode States of Light

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Heralded Single-Photon Addition by PDC

#### 2.2. Multimode Superposition of Heralded Single-Photon Additions

#### 2.3. Two-Mode Homodyne Detection and Tomographic State Reconstruction

#### 2.4. Entanglement Measurements

## 3. Results

#### 3.1. Delocalized Single Photon

#### 3.2. Hybrid Entanglement

#### 3.3. Entanglement of Macroscopic Coherent States

#### 3.4. Discorrelation

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Zavatta, A.; Viciani, S.; Bellini, M. Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light. Science
**2004**, 306, 660–662. [Google Scholar] [CrossRef][Green Version] - Zavatta, A.; Viciani, S.; Bellini, M. Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission. Phys. Rev. A
**2005**, 72, 023820. [Google Scholar] [CrossRef][Green Version] - Rahimi-Keshari, S.; Kiesel, T.; Vogel, W.; Grandi, S.; Zavatta, A.; Bellini, M. Quantum Process Nonclassicality. Phys. Rev. Lett.
**2013**, 110, 160401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lee, C.T. Theorem on nonclassical states. Phys. Rev. A
**1995**, 52, 3374–3376. [Google Scholar] [CrossRef] - Wenger, J.; Tualle-Brouri, R.; Grangier, P. Non-Gaussian Statistics from Individual Pulses of Squeezed Light. Phys. Rev. Lett.
**2004**, 92, 153601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ourjoumtsev, A. Generating Optical Schrodinger Kittens for Quantum Information Processing. Science
**2006**, 312, 83–86. [Google Scholar] [CrossRef] [PubMed] - Zavatta, A.; Parigi, V.; Kim, M.S.; Bellini, M. Subtracting photons from arbitrary light fields: Experimental test of coherent state invariance by single-photon annihilation. New J. Phys.
**2008**, 10, 123006. [Google Scholar] [CrossRef] - Bellini, M.; Zavatta, A. Manipulating Light States by Single-Photon Addition and Subtraction. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 2010; Volume 55, pp. 41–83. [Google Scholar] [CrossRef]
- Parigi, V.; Zavatta, A.; Kim, M.; Bellini, M. Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field. Science
**2007**, 317, 1890–1893. [Google Scholar] [CrossRef] [PubMed] - Kim, M.S.; Jeong, H.; Zavatta, A.; Parigi, V.; Bellini, M. Scheme for Proving the Bosonic Commutation Relation Using Single-Photon Interference. Phys. Rev. Lett.
**2008**, 101, 260401. [Google Scholar] [CrossRef] [PubMed] - Zavatta, A.; Parigi, V.; Kim, M.S.; Jeong, H.; Bellini, M. Experimental Demonstration of the Bosonic Commutation Relation via Superpositions of Quantum Operations on Thermal Light Fields. Phys. Rev. Lett.
**2009**, 103, 140406. [Google Scholar] [CrossRef][Green Version] - Zavatta, A.; Fiurášek, J.; Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon
**2011**, 5, 52–56. [Google Scholar] [CrossRef][Green Version] - Coelho, A.S.; Costanzo, L.S.; Zavatta, A.; Hughes, C.; Kim, M.; Bellini, M. Universal Continuous-Variable State Orthogonalizer and Qubit Generator. Phys. Rev. Lett.
**2016**, 116, 110501. [Google Scholar] [CrossRef] [PubMed][Green Version] - Costanzo, L.S.; Coelho, A.S.; Biagi, N.; Fiurášek, J.; Bellini, M.; Zavatta, A. Measurement-Induced Strong Kerr Nonlinearity for Weak Quantum States of Light. Phys. Rev. Lett.
**2017**, 119, 013601. [Google Scholar] [CrossRef] - Ourjoumtsev, A.; Dantan, A.; Tualle-Brouri, R.; Grangier, P. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction. Phys. Rev. Lett.
**2007**, 98, 030502. [Google Scholar] [CrossRef] [PubMed][Green Version] - Takahashi, H.; Neergaard-Nielsen, J.S.; Takeuchi, M.; Takeoka, M.; Hayasaka, K.; Furusawa, A.; Sasaki, M. Entanglement distillation from Gaussian input states. Nat. Photon
**2010**, 4, 178–181. [Google Scholar] [CrossRef][Green Version] - Lvovsky, A.I.; Hansen, H.; Aichele, T.; Benson, O.; Mlynek, J.; Schiller, S. Quantum State Reconstruction of the Single-Photon Fock State. Phys. Rev. Lett.
**2001**, 87, 050402. [Google Scholar] [CrossRef][Green Version] - Zavatta, A.; Viciani, S.; Bellini, M. Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A
**2004**, 70, 053821. [Google Scholar] [CrossRef][Green Version] - Ou, Z.Y. Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields. Quantum Semiclass. Opt.
**1997**, 9, 599–614. [Google Scholar] [CrossRef] - Aichele, T.; Lvovsky, A.; Schiller, S. Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state. Eur. Phys. J. D At. Mol. Opt. Phys.
**2002**, 18, 237–245. [Google Scholar] [CrossRef][Green Version] - Bellini, M.; Marin, F.; Viciani, S.; Zavatta, A.; Arecchi, F.T. Nonlocal Pulse Shaping with Entangled Photon Pairs. Phys. Rev. Lett.
**2003**, 90, 043602. [Google Scholar] [CrossRef] [PubMed][Green Version] - Viciani, S.; Zavatta, A.; Bellini, M. Nonlocal modulations on the temporal and spectral profiles of an entangled photon pair. Phys. Rev. A
**2004**, 69, 053801. [Google Scholar] [CrossRef][Green Version] - Klyshko, D.N. Utilization of vacuum fluctuations as an optical brightness standard. Sov. J. Quantum Electron.
**1977**, 7, 591–595. [Google Scholar] [CrossRef] - Kitaeva, G.K.; Penin, A.N.; Fadeev, V.V.; Yanait, Y.A. Measurement of brightness of light fluxes using vacuum fluctuations as a reference. Sov. Phys. Dokl.
**1979**, 24, 564. [Google Scholar] - Migdall, A. Correlated-Photon Metrology without Absolute Standards. Phys. Today
**1999**, 52, 41–46. [Google Scholar] [CrossRef] - Zavatta, A.; Parigi, V.; Bellini, M. Experimental nonclassicality of single-photon-added thermal light states. Phys. Rev. A
**2007**, 75, 052106. [Google Scholar] [CrossRef][Green Version] - Kiesel, T.; Vogel, W.; Parigi, V.; Zavatta, A.; Bellini, M. Experimental determination of a nonclassical Glauber-Sudarshan P function. Phys. Rev. A
**2008**, 78, 021804. [Google Scholar] [CrossRef][Green Version] - Kiesel, T.; Vogel, W.; Bellini, M.; Zavatta, A. Nonclassicality quasiprobability of single-photon-added thermal states. Phys. Rev. A
**2011**, 83, 032116. [Google Scholar] [CrossRef][Green Version] - Zavatta, A.; D’Angelo, M.; Parigi, V.; Bellini, M. Remote Preparation of Arbitrary Time-Encoded Single-Photon Ebits. Phys. Rev. Lett.
**2006**, 96, 020502. [Google Scholar] [CrossRef][Green Version] - Leonhardt, U. Measuring the Quantum State of Light; Cambridge Studies in Modern Optics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1997. [Google Scholar]
- Vogel, K.; Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A
**1989**, 40, 2847–2849. [Google Scholar] [CrossRef] [PubMed] - Smithey, D.T.; Beck, M.; Raymer, M.G.; Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett.
**1993**, 70, 1244–1247. [Google Scholar] [CrossRef] - Zavatta, A.; Bellini, M.; Ramazza, P.L.; Marin, F.; Arecchi, F.T. Time-domain analysis of quantum states of light: Noise characterization and homodyne tomography. J. Opt. Soc. Am. B
**2002**, 19, 1189. [Google Scholar] [CrossRef] - Zavatta, A.; D’Angelo, M.; Parigi, V.; Bellini, M. Two-mode homodyne tomography of time-encoded single-photon ebits. Laser Phys.
**2006**, 16, 1501–1507. [Google Scholar] [CrossRef] - Hradil, Z.; Řeháček, J.; Fiurášek, J.; Ježek, M. Maximum-Likelihood Methods in Quantum Mechanics. In Quantum State Estimation; Lecture Notes in Physics; Paris, M., Řeháček, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 649, pp. 59–112. [Google Scholar] [CrossRef]
- Lvovsky, A.I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B Quantum Semiclass. Opt.
**2004**, 6, S556–S559. [Google Scholar] [CrossRef] - Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: Necessary and sufficient conditions. Phys. Lett. A
**1996**, 223, 1–8. [Google Scholar] [CrossRef][Green Version] - Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett.
**1996**, 77, 1413–1415. [Google Scholar] [CrossRef] [PubMed][Green Version] - Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A
**2002**, 65, 032314. [Google Scholar] [CrossRef][Green Version] - Terhal, B.M. Bell inequalities and the separability criterion. Phys. Lett. A
**2000**, 271, 319–326. [Google Scholar] [CrossRef][Green Version] - Terhal, B.M. Detecting quantum entanglement. Theor. Comput. Sci.
**2002**, 287, 313–335. [Google Scholar] [CrossRef][Green Version] - Horodecki, P.; Lewenstein, M. Bound Entanglement and Continuous Variables. Phys. Rev. Lett.
**2000**, 85, 2657–2660. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jeong, H.; Zavatta, A.; Kang, M.; Lee, S.W.; Costanzo, L.S.; Grandi, S.; Ralph, T.C.; Bellini, M. Generation of hybrid entanglement of light. Nat. Photon
**2014**, 8, 564–569. [Google Scholar] [CrossRef][Green Version] - D’Angelo, M.; Zavatta, A.; Parigi, V.; Bellini, M. Tomographic test of Bell’s inequality for a time-delocalized single photon. Phys. Rev. A
**2006**, 74, 052114. [Google Scholar] [CrossRef][Green Version] - Morin, O.; Bancal, J.D.; Ho, M.; Sekatski, P.; D’Auria, V.; Gisin, N.; Laurat, J.; Sangouard, N. Witnessing Trustworthy Single-Photon Entanglement with Local Homodyne Measurements. Phys. Rev. Lett.
**2013**, 110, 130401. [Google Scholar] [CrossRef] - Morin, O.; Huang, K.; Liu, J.; Le Jeannic, H.; Fabre, C.; Laurat, J. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photon
**2014**, 8, 570–574. [Google Scholar] [CrossRef][Green Version] - Costanzo, L.S.; Zavatta, A.; Grandi, S.; Bellini, M.; Jeong, H.; Kang, M.; Lee, S.W.; Ralph, T.C. Properties of hybrid entanglement between discrete- and continuous-variable states of light. Phys. Scr.
**2015**, 90, 074045. [Google Scholar] [CrossRef][Green Version] - Agarwal, G.S.; Tara, K. Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A
**1991**, 43, 492–497. [Google Scholar] [CrossRef] - Costanzo, L.S.; Zavatta, A.; Grandi, S.; Bellini, M.; Jeong, H.; Kang, M.; Lee, S.W.; Ralph, T.C. Experimental hybrid entanglement between quantum and classical states of light. Int. J. Quantum Inform.
**2014**, 12, 1560015. [Google Scholar] [CrossRef] - Hradil, Z.; Mogilevtsev, D.; Řeháček, J. Biased Tomography Schemes: An Objective Approach. Phys. Rev. Lett.
**2006**, 96, 230401. [Google Scholar] [CrossRef][Green Version] - Biagi, N.; Costanzo, L.S.; Bellini, M.; Zavatta, A. Entangling Macroscopic Light States by Delocalized Photon Addition. Phys. Rev. Lett.
**2020**, 124, 033604. [Google Scholar] [CrossRef] [PubMed][Green Version] - Sekatski, P.; Sangouard, N.; Stobińska, M.; Bussières, F.; Afzelius, M.; Gisin, N. Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A
**2012**, 86, 060301. [Google Scholar] [CrossRef][Green Version] - Lee, C.W.; Jeong, H. Quantification of Macroscopic Quantum Superpositions within Phase Space. Phys. Rev. Lett.
**2011**, 106, 220401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Fröwis, F.; Sekatski, P.; Dür, W.; Gisin, N.; Sangouard, N. Macroscopic quantum states: Measures, fragility, and implementations. Rev. Mod. Phys.
**2018**, 90, 025004. [Google Scholar] [CrossRef][Green Version] - Jeong, H.; Kang, M.; Kwon, H. Characterizations and quantifications of macroscopic quantumness and its implementations using optical fields. Opt. Commun.
**2015**, 337, 12–21. [Google Scholar] [CrossRef][Green Version] - Bruno, N.; Martin, A.; Sekatski, P.; Sangouard, N.; Thew, R.T.; Gisin, N. Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys.
**2013**, 9, 545–548. [Google Scholar] [CrossRef][Green Version] - Lvovsky, A.I.; Ghobadi, R.; Chandra, A.; Prasad, A.S.; Simon, C. Observation of micro–macro entanglement of light. Nat. Phys.
**2013**, 9, 541–544. [Google Scholar] [CrossRef][Green Version] - Sychev, D.V.; Novikov, V.A.; Pirov, K.K.; Simon, C.; Lvovsky, A.I. Entanglement of macroscopically distinct states of light. Optica
**2019**, 6, 1425. [Google Scholar] [CrossRef] - Meyer-Scott, E.; Tiedau, J.; Harder, G.; Shalm, L.K.; Bartley, T.J. Discorrelated quantum states. Sci. Rep.
**2017**, 7, 41622. [Google Scholar] [CrossRef][Green Version] - Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
**1991**, 67, 661–663. [Google Scholar] [CrossRef][Green Version] - Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett.
**1992**, 68, 557–559. [Google Scholar] [CrossRef] - Shamir, A.; Rivest, R.L.; Adleman, L.M. Mental Poker. In The Mathematical Gardner; Klarner, D.A., Ed.; Springer: Boston, MA, USA, 1981; pp. 37–43. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
**1978**, 21, 120–126. [Google Scholar] [CrossRef] - Zhai, Y.; Becerra, F.E.; Glebov, B.L.; Wen, J.; Lita, A.E.; Calkins, B.; Gerrits, T.; Fan, J.; Nam, S.W.; Migdall, A. Photon-number-resolved detection of photon-subtracted thermal light. Opt. Lett.
**2013**, 38, 2171. [Google Scholar] [CrossRef] - Biagi, N.; Francesconi, S.; Gessner, M.; Bellini, M.; Zavatta, A. Remote Phase Sensing by Coherent Single Photon Addition. Submitted
**2021**. [Google Scholar]

**Figure 1.**Experimental scheme for heralded single-photon addition. Symbols and abbreviations are defined in the text.

**Figure 2.**Experimental scheme for heralded multimode superposition of photon additions on consecutive temporal wavepacket modes by means of an unbalanced interferometer in the idler path.

**Figure 3.**Scheme of the ultrafast modulation of the laser pulse train for the phase control of the local oscillator (LO) pulses in two-mode homodyne detection.

**Figure 5.**Experimental values (blue dots) of the entanglement witness $S\left(R\right)$ in Equation (6), as a function of the superposition weight R, measured on the states of Equation (4). The black dashed line is the theoretical threshold above which $S\left(R\right)$ detects entanglement. Experimental values larger than this threshold certify the presence of entanglement in the state, whereas values below it cannot reveal any information about this property. The red area represents the theoretical behavior of the witness calculated on the states of Equation (4), considering fluctuations in the detection efficiency during the measurements.

**Figure 6.**(

**a**) Experimental scheme for hybrid entangled state generation. (

**b**) Measured values and theoretical behavior of the NPT as a function of the amplitude $\alpha $ of the input coherent state.

**Figure 7.**(

**a**) Experimental scheme for the generation of macro-macro entanglement. (

**b**) Experimental NPT (green dots) of the generated states as a function of the mean number of photons $\overline{n}$ in the input coherent states. Red and blue solid curves are the ideal NPT for $\phi =\pi $ and $\phi =0$, respectively. The orange curve is calculated for $\phi =\pi $ when all the experimental imperfections are considered.

**Figure 8.**(

**Top**) Raw correlations between the quadratures in the two modes as acquired from homodyne detection. Dots represent experimental points for different values of $\overline{n}$, while dashed lines are the theoretical predictions considering the measured experimental inefficiencies. (

**Bottom**) Quadrature correlations for different values of $\overline{n}$ after removal of the mean field from the measured quadrature distributions. Dots are the experimental points, while the black dashed line is the theoretical prediction for a balanced single-photon path-entangled state, with a detection efficiency of ${\eta}_{p}=0.92$.

**Figure 9.**Raw joint photon number probability distributions as a function of the mean number of photons $\overline{n}$ of the input coherent states, clearly showing the effect of discorrelation.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Biagi, N.; Francesconi, S.; Zavatta, A.; Bellini, M.
Coherent Superpositions of Photon Creation Operations and Their Application to Multimode States of Light. *Entropy* **2021**, *23*, 999.
https://doi.org/10.3390/e23080999

**AMA Style**

Biagi N, Francesconi S, Zavatta A, Bellini M.
Coherent Superpositions of Photon Creation Operations and Their Application to Multimode States of Light. *Entropy*. 2021; 23(8):999.
https://doi.org/10.3390/e23080999

**Chicago/Turabian Style**

Biagi, Nicola, Saverio Francesconi, Alessandro Zavatta, and Marco Bellini.
2021. "Coherent Superpositions of Photon Creation Operations and Their Application to Multimode States of Light" *Entropy* 23, no. 8: 999.
https://doi.org/10.3390/e23080999