Psychomotor Predictive Processing
Abstract
:1. Introduction
2. Need for Predictive Processing Formulation Focused on Psychomotor Functioning
3. Critical Realist Philosophy of Science
4. Predictive Global Neuronal Workspace Theory (PGNW)
5. Critical Realist Framing of Psychomotor Experience
6. Relating PGNW to Critical Realist Framing of Psychomotor Experience
6.1. Overview
6.2. Consistency of Top-Down Prior Expectations
6.3. Strength of Bottom-Up Sensory Signals
6.4. Endogenous Attention-Based Modulation
6.5. Expectations, Signals, Attention, and Human–Robot Systems
7. Psychomotor Hierarchical Predictive Processing
7.1. Overview
7.2. Challenges
7.3. Opportunities in Planning Human–Robot Systems
7.4. Opportunities in Operating Human–Robot Systems
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kok, P.; Rahnev, D.; Jehee, J.F.; Lau, H.C.; De Lange, F.P. Attention reverses the effect of prediction in silencing sensory signals. Cereb. Cortex 2012, 22, 2197–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacongne, C.; Labyt, E.; van Wassenhove, V.; Bekinschtein, T.; Naccache, L.; Dehaene, S. Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 20754–20759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaconescu, A.O.; Mathys, C.; Weber, L.A.E.; Kasper, L.; Mauer, J.; Stephan, K.E. Hierarchical prediction errors in midbrain and septum during social learning. Soc. Cogn. Affect. Neurosci. 2017, 12, 618–634. [Google Scholar] [CrossRef]
- Strauss, M.; Sitt, J.D.; King, J.R.; Elbaz, M.; Azizi, L.; Buiatti, M.; Naccache, L.; Van Wassenhove, V.; Dehaene, S. Disruption of hierarchical predictive coding during sleep. Proc. Natl. Acad. Sci. USA 2015, 112, E1353–E1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, M.J.; Adams, R.A.; Brown, H.; Parees, I.; Friston, K.J. A Bayesian account of “hysteria”. Brain 2012, 135, 3495–3512. [Google Scholar] [CrossRef] [PubMed]
- Ongaro, G.; Kaptchuk, T.J. Symptom perception, placebo effects, and the Bayesian brain. Pain 2019, 160, 1–4. [Google Scholar] [CrossRef]
- Anchisi, D.; Zanon, M.A. Bayesian perspective on sensory and cognitive integration in pain perception and placebo analgesia. PLoS ONE 2015, 10, e0117270. [Google Scholar] [CrossRef]
- Bräscher, A.K.; Sütterlin, S.; Scheuren, R.; Van den Bergh, O.; Witthöft, M. Somatic symptom perception from a predictive processing perspective: An empirical test using the thermal grill illusion. Psychosom. Med. 2020, 82, 708–714. [Google Scholar] [CrossRef]
- Cregan-Reid, V. Primate Change: How the World We Made Is Remaking Us; Cassell: London, UK, 2018. [Google Scholar]
- Fox, S.; Kotelba, A.; Marstio, I.; Montonen, J. Aligning human psychomotor characteristics with robots, exoskeletons and augmented reality. Robot. Comput.-Integr. Manuf. 2020, 63, 101922. [Google Scholar] [CrossRef]
- Whyte, C.J. Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. Conscious. Cogn. 2019, 73, 102763. [Google Scholar] [CrossRef]
- Mashour, G.A.; Roelfsema, P.; Changeux, J.P.; Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 2020, 105, 776–798. [Google Scholar] [CrossRef]
- Fox, S. Multiscale free energy analysis of human ecosystem engineering. Entropy 2021, 23, 396. [Google Scholar] [CrossRef]
- Fox, S.; Aranko, O.; Heilala, J.; Vahala, P. Exoskeletons: Comprehensive, comparative and critical analyses of their potential to improve manufacturing performance. J. Manuf. Technol. Manag. 2020, 31, 1261–1280. [Google Scholar] [CrossRef] [Green Version]
- Zalasiewicz, J.; Williams, M.; Waters, C.; Barnosky, A.; Palmesino, J.; Rönnskog, A.-S.; Edgeworth, M.; Neal, C.; Cearreta, A.; Ellis, E.; et al. Scale and diversity of the physical technosphere: A geological perspective. Anthr. Rev. 2017, 4, 9–22. [Google Scholar] [CrossRef]
- Evjemo, L.D.; Gjerstad, T.; Grøtli, E.I.; Sziebig, G. Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart Factories. Curr. Robot. Rep. 2020, 1, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.; Melão, N.; Salvadorinho, J.; Soares, B.; Rosete, A. Service robots in the hospitality industry: The case of Hennna hotel, Japan. Technol. Soc. 2020, 63, 101423. [Google Scholar] [CrossRef]
- Fukuyama, M. Society 5.0: Aiming for a new human-centered society. Jpn. Spotlight 2018, 27, 47–50. [Google Scholar]
- Gauttier, S. Hospital 5.0: Enhancing nurses with the use of wearables. In Proceedings of the 32nd International BCS Human Computer Interaction Conference, Belfast, UK, 4–6 July 2018; pp. 1–5. [Google Scholar]
- Østergaard, E.H. Welcome to Industry 5.0, the human Touch Revolution Is Now Underway. Qual. Mag. 2019. Available online: https://www.ee.co.za/article/welcome-to-industry-5-0-the-human-touch-revolution-is-now-under-way.html (accessed on 22 April 2021).
- John, K.K.; Adarsh, S.N.; Pattali, V. Workers to super workers: A brief discussion on important technologies for industry 5.0 manufacturing systems. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2311, p. 070025. [Google Scholar]
- Cocuzzo, B.; Wrench, A.; O’Malley, C. Balancing protection from COVID-19 and the need for human touch in nursing homes. J. Am. Geriatr. Soc. 2020. [Google Scholar] [CrossRef]
- Longo, F.; Padovano, A.; Umbrello, S. Value-oriented and ethical technology engineering in Industry 5.0: A human-centric perspective for the design of the Factory of the Future. Appl. Sci. 2020, 10, 4182. [Google Scholar] [CrossRef]
- Goekoop, R.; de Kleijn, R. How higher goals are constructed and collapse under stress: A hierarchical Bayesian control systems perspective. Neurosci. Biobehav. Rev. 2021, 123, 257–285. [Google Scholar] [CrossRef]
- Youssef, F.F.; Dookeeram, K.; Basdeo, V.; Francis, E.; Doman, M.; Mamed, D.; Maloo, S.; Degannes, J.; Dobo, L.; Ditshotlo, P. Stress alters personal moral decision making. Psychoneuroendocrinology 2012, 37, 491–498. [Google Scholar] [CrossRef]
- Gino, F.; Schweitzer, M.E.; Mead, N.L.; Ariely, D. Unable to resist temptation: How self-control depletion promotes unethical behavior. Organ. Behav. Hum. Decis. Process. 2011, 115, 191–203. [Google Scholar] [CrossRef]
- Lee, E.-J.; Yun, J.H. Moral incompetency under time constraint. J. Bus. Res. 2019, 99, 438–445. [Google Scholar] [CrossRef]
- Sahota, N.; Ashley, M. When robots replace human managers: Introducing the quantifiable workplace. IEEE Eng. Manag. Rev. 2019, 47, 21–23. [Google Scholar] [CrossRef]
- Barrat, J. Our Final Invention: Artificial Intelligence and the End of the Human Era; St. Martin’s Press: New York, NY, USA, 2013. [Google Scholar]
- Cave, S.; Coughlan, K.; Dihal, K. “Scary robots”: Examining public responses to AI. In Proceedings of the AIES 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Mathur, M.B.; Reichling, D.B. Navigating a social world with robot partners: A quantitative cartography of the Uncanny Valley. Cognition 2016, 146, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Vanderelst, D.; Winfield, A. The dark side of ethical robots. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; pp. 317–322. [Google Scholar]
- Tabor, A.; Catley, M.J.; Gandevia, S.C.; Thacker, M.A.; Spence, C.; Moseley, G.L. The close proximity of threat: Altered distance perception in the anticipation of pain. Front. Psychol. 2015, 6, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reicherts, P.; Wiemer, J.; Gerdes, A.; Schulz, S.M.; Pauli, P.; Wieser, M.J. Anxious anticipation and pain: The influence of instructed vs. conditioned threat on pain. Soc. Cogn. Affect. Neurosci. 2017, 12, 544–554. [Google Scholar] [CrossRef] [Green Version]
- Day, A.J.; Brasher, K.; Bridger, R.S. Accident proneness revisited: The role of psychological stress and cognitive failure. Accid. Anal. Prev. 2012, 49, 532–535. [Google Scholar] [CrossRef]
- Keogh, E.; Ellery, D.; Hunt, C.; Hannent, I. Selective attentional bias for pain-related stimuli amongst pain fearful individuals. Pain 2001, 91, 91–100. [Google Scholar] [CrossRef]
- Naylor, B.; Boag, S.; Gustin, S.M. New evidence for a pain personality? A critical review of the last 120 years of pain and personality. Scand. J. Pain 2017, 17, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larrea, L.; Bastuji, H. Pain and consciousness. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 87, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Kopin, I.J. Homeostatic systems, biocybernetics, and autonomic neuroscience. Auton. Neurosci. 2017, 208, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Zaman, J.; Vlaeyen, J.W.; Van Oudenhove, L.; Wiech, K.; Van Diest, I. Associative fear learning and perceptual discrimination: A perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 2015, 51, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
- Sallin, K.; Lagercrantz, H.; Evers, K.; Engström, I.; Hjern, A.; Petrovic, P. Resignation syndrome: Catatonia? Culture-bound? Front. Behav. Neurosci. 2016, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Glynn, I. Elegance in Science: The Beauty of Simplicity; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Einstein, A. On the Method of Theoretical Physics; The Herbert Spencer Lecture; Oxford University Press: Oxford, UK, 1933. [Google Scholar]
- Baker, A. Simplicity. In Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 2010. [Google Scholar]
- Wacker, J.G. A definition of theory: Research guidelines for different theory-building research methods in operations management. J. Oper. Manag. 1998, 16, 361–385. [Google Scholar] [CrossRef]
- Whetten, D. What constitutes a theoretical contribution? Acad. Manag. Rev. 1989, 14, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Cross, N. Engineering Design Methods: Strategies for Product Design; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Bayne, T.; Hohwy, J.; Owen, A.M. Are there levels of consciousness? Trends Cogn. Sci. 2016, 20, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Searle, J. Consciousness. In The Oxford Companion to Philosophy; Honderich, T., Ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Block, N. On a confusion about a function of consciousness. In The Nature of Consciousness: Philosophical Debates; Block, N., Flanagan, O., Guzeldere, G., Eds.; MIT Press: Cambridge, MA, USA, 1998; pp. 375–415. [Google Scholar]
- Gennaro, R.J. The Consciousness Paradox: Consciousness, Concepts, and Higher-Order Thoughts; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Dennett, D. Consciousness Explained; Penguin: London, UK, 2004. [Google Scholar]
- Lycan, W. Consciousness and Experience; MIT Press: Cambridge, MA, USA, 1996; pp. 1–4. [Google Scholar]
- Metzinger, T. Being No One: The Self-Model Theory of Subjectivity, 2nd ed.; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Bhaskar, R. A Realist Theory of Science; Verso: London, UK, 1975. [Google Scholar]
- North, J. Sport Coaching Research and Practice: Ontology, Interdisciplinarity and Critical Realism; Routledge: London, UK, 2017. [Google Scholar]
- Williams, L.; Rycroft-Malone, J.; Burton, C.R. Bringing critical realism to nursing practice: Roy Bhaskar’s contribution. Nurs. Philos. 2017, 18, e12130. [Google Scholar] [CrossRef]
- Bhaskar, R. The Possibility of Naturalism: A Philosophical Critique of Contemporary Human Sciences, 4th ed.; Routledge: London, UK, 2014. [Google Scholar]
- Healey, M.P.; Hodgkinson, G.P. Rethinking the philosophical and theoretical foundations of organizational neuroscience: A critical realist alternative. Hum. Relat. 2014, 67, 765–792. [Google Scholar] [CrossRef]
- Mingers, J. Systems Thinking, Critical Realism and Philosophy: A Confluence of Ideas; Routledge: Oxford, UK, 2014. [Google Scholar]
- Archer, M.S. Structure, Agency and the Internal Conversation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Smith, M.L. Overcoming theory-practice inconsistencies: Critical realism and information systems research. Inf. Organ. 2006, 16, 191–211. [Google Scholar] [CrossRef]
- Gershuny, B.S.; Sher, K.J. The relation between personality and anxiety: Findings from a 3-year prospective study. J. Abnorm. Psychol. 1998, 107, 252. [Google Scholar] [CrossRef]
- Yeadon, M.R.; King, M.A.; Wilson, C. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement. J. Biomech. 2006, 39, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Robson, C. Real World Research, 2nd ed.; Blackwell: Malden, MA, USA, 2002. [Google Scholar]
- Van Gulick, R. Consciousness. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Spring 2018 Edition; Stanford University: Stanford, CA, USA, 2018; Available online: https://plato.stanford.edu/archives/spr2018/entries/consciousness/ (accessed on 22 April 2021).
- Whyte, C.J.; Smith, R. The predictive global neuronal workspace: A formal active inference model of visual consciousness. Prog. Neurobiol. 2020, 199, 101918. [Google Scholar] [CrossRef]
- Jeczminska, K. Global workspace theory and sensorimotor theory unified by predictive processing. J. Conscious. Stud. 2017, 24, 79–105. [Google Scholar]
- Solms, M.; Friston, K. How and why consciousness arises: Some considerations from physics and physiology. J. Conscious. Stud. 2018, 25, 202–238. [Google Scholar]
- Solms, M. The hard problem of consciousness and the free energy principle. Front. Psychol. 2019, 9, 2714. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Kirchhoff, M.D.; Friston, K.J. A tale of two densities: Active inference is enactive inference. Adapt. Behav. 2020, 28, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Fox, S. Active inference: Applicability to different types of social organization explained through reference to industrial engineering and quality management. Entropy 2021, 23, 198. [Google Scholar] [CrossRef]
- Atlas, L.Y.; Wager, T.D. How expectations shape pain. Neurosci. Lett. 2012, 520, 140–148. [Google Scholar] [CrossRef]
- Legrain, V.; Van Damme, S.; Eccleston, C.; Davis, K.D.; Seminowicz, D.A.; Crombez, G. A neurocognitive model of attention to pain: Behavioral and neuroimaging evidence. Pain 2009, 144, 230–232. [Google Scholar] [CrossRef]
- Handley, I.M.; Fowler, S.L.; Rasinski, H.M.; Helfer, S.G.; Geers, A.L. Beliefs about expectations moderate the influence of expectations on pain perception. Int. J. Behav. Med. 2013, 20, 52–58. [Google Scholar] [CrossRef]
- Franklin, Z.C.; Holmes, P.S.; Smith, N.C.; Fowler, N.E. Personality type influences attentional bias in individuals with chronic back pain. PLoS ONE 2016, 11, e0147035. [Google Scholar] [CrossRef]
- Colombetti, G.; Zavala, E. Are emotional states based in the brain? A critique of affective brainocentrism from a physiological perspective. Biol. Philos. 2019, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.K.; Tsakiris, M. Being a beast machine: The somatic basis of selfhood. Trends Cogn. Sci. 2018, 22, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.M.; Müller-Oerlinghausen, B.; Hemrich, N.; Bönsch, D. Effects of Psychoactive Massage in Outpatients with Depressive Disorders: A Randomized Controlled Mixed-Methods Study. Brain Sci. 2020, 10, 676. [Google Scholar] [CrossRef]
- Cioni, G.; Sgandurra, G. Normal psychomotor development. In Handbook of Clinical Neurology; Aminoff, M.J., Boller, F., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 111, pp. 3–15. [Google Scholar]
- Schleip, R. Fascia as an organ of communication. In Fascia: The Tensional Network of the Human Body; Schleip, R., Findley, T.W., Chaitow, L., Huijing, P.A., Eds.; Elsevier Ltd.: Beijing, China, 2013; pp. 77–79. [Google Scholar]
- Stecco, C.; Pirri, C.; Fede, C.; Fan, C.; Giordani, F.; Stecco, L.; Foti, C.; De Caro, R. Dermatome and fasciatome. Clin. Anat. 2019, 32, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; Miller, L.S.; Sutherland, D.H. Gait asymmetry in patients with limb-length inequality. J. Pediatric Orthop. 1996, 16, 144–150. [Google Scholar] [CrossRef]
- Wallden, M.; Sisson, N. Modern disintegration and primal connectivity. J. Bodyw. Mov. Ther. 2019, 23, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, J.; Rohde, K.; Troje, N.F. How we walk affects what we remember: Gait modifications through biofeedback change negative affective memory bias. J. Behav. Ther. Exp. Psychiatry 2015, 46, 121–125. [Google Scholar] [CrossRef]
- Sun, J.; Wu, P.; Shen, Y.; Yang, Z.; Li, H.; Liu, Y.; Zhu, T.; Li, L.; Zhang, K.; Chen, M. Relationship between personality and gait: Predicting personality with gait features. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1227–1231. [Google Scholar]
- Amtmann, D.; Liljenquist, K.; Bamer, A.; Bocell, F.; Jensen, M.; Wilson, R.; Turk, D. Measuring pain catastrophizing and pain-related self-efficacy: Expert panels, focus groups, and cognitive interviews. Patient-Patient-Cent. Outcomes Res. 2018, 11, 107–117. [Google Scholar] [CrossRef]
- Tracey, I. Getting the pain you expect: Mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 2010, 16, 1277. [Google Scholar] [CrossRef]
- Chapman, C.R. Neuromatrix theory. Pain Forum 1996, 5, 139–142. [Google Scholar] [CrossRef]
- Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Sutin, A.R.; Stephan, Y.; Luchetti, M.; Terracciano, A. The prospective association between personality traits and persistent pain and opioid medication use. J. Psychosom. Res. 2019, 123, 109721. [Google Scholar] [CrossRef]
- Merino-Tejedor, E.; Hontangas-Beltrán, P.M.; Boada-Grau, J.; Lucas-Mangas, S. Hardiness as a moderator variable between the Big-Five Model and work effort. Personal. Individ. Differ. 2015, 85, 105–110. [Google Scholar] [CrossRef]
- Soderstrom, M.; Dolbier, C.; Leiferman, J.; Steinhardt, M. The relationship of hardiness, coping strategies, and perceived stress to symptoms of illness. J. Behav. Med. 2000, 23, 311–328. [Google Scholar] [CrossRef]
- Hystad, S.W.; Eid, J.; Johnsen, B.H.; Laberg, J.C.; Bartone, P.T. Psychometric properties of the revised Norwegian dispositional resilience (hardiness) scale. Scand. J. Psychol. 2010, 51, 237–245. [Google Scholar] [CrossRef]
- Levin, S.M.; Martin, D.C. Biotensegrity: The mechanics of fascia. Fascia—The Tensional Network of the Human Body. In The Science and Clinical Applications in Manual and Movement Therapy; Elsevier: Edinburgh, UK, 2012; pp. 137–142. [Google Scholar]
- Mense, S. Innervation of the thoracolumbar fascia. Eur. J. Transl. Myol. 2019, 29, 8297. [Google Scholar] [CrossRef]
- Pavan, P.G.; Stecco, A.; Stern, R.; Stecco, C. Painful connections: Densification versus fibrosis of fascia. Curr. Pain Headache Rep. 2014, 18, 441. [Google Scholar] [CrossRef]
- Burton, T. Painful memories: Chronic pain as a form of re-membering. Mem. Stud. 2011, 4, 23–32. [Google Scholar] [CrossRef]
- Gedney, J.J.; Logan, H. Pain related recall predicts future pain report. Pain 2006, 121, 69–76. [Google Scholar] [CrossRef]
- Riva, G. The neuroscience of body memory: From the self through the space to the others. Cortex 2018, 104, 241–260. [Google Scholar] [CrossRef]
- Kaukinen, P.T.; Arokoski, J.P.; Huber, E.O.; Luomajoki, H.A. Intertester and intratester reliability of a movement control test battery for patients with knee osteoarthritis and controls. J. Musculoskelet. Neuronal Interact. 2017, 17, 197. [Google Scholar]
- Schnurr, R.F.; MacDonald, M.R. Memory complaints in chronic pain. Clin. J. Pain 1995, 11, 103–111. [Google Scholar] [CrossRef]
- Chaitow, L. Fascial Dysfunction: Manual Therapy Approaches, 2nd ed.; Handspring Publishing Ltd.: East Lothian, UK, 2018. [Google Scholar]
- Stecco, C. Functional Atlas of the Human Fascial System; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Larkam, E. Fascia-focused Pilates for the older adult. Top. Geriatr. Rehabil. 2017, 33, 20–31. [Google Scholar] [CrossRef]
- Nelson, A.; Kokkonen, J. Stretching Anatomy; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Goodwin, H.; Eagleson, C.; Mathews, A.; Yiend, J.; Hirsch, C. Automaticity of attentional bias to threat in high and low worriers. Cogn. Ther. Res. 2017, 41, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Liptan, G.L. Fascia: A missing link in our understanding of the pathology of fibromyalgia. J. Bodyw. Mov. Ther. 2010, 14, 3–12. [Google Scholar] [CrossRef]
- Salim, J.; Wadey, R.; Diss, C. Examining the relationship between hardiness and perceived stress-related growth in a sport injury context. Psychol. Sport Exerc. 2015, 19, 10–17. [Google Scholar] [CrossRef]
- Salomons, T.V.; Moayedi, M.; Weissman-Fogel, I.; Goldberg, M.B.; Freeman, B.V.; Tenenbaum, H.C.; Davis, K.D. Perceived helplessness is associated with individual differences in the central motor output system. Eur. J. Neurosci. 2012, 35, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Samwel, H.J.; Evers, A.W.; Crul, B.J.; Kraaimaat, F.W. The role of helplessness, fear of pain, and passive pain-coping in chronic pain patients. Clin. J. Pain 2006, 22, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Deroche, T.; Woodman, T.; Stephan, Y.; Brewer, B.W.; Le Scanff, C. Athletes’ inclination to play through pain: A coping perspective. Anxiety Stress Coping 2011, 24, 579–587. [Google Scholar] [CrossRef]
- Flood, A.; Waddington, G.; Thompson, K.; Cathcart, S. Increased conditioned pain modulation in athletes. J. Sports Sci. 2017, 35, 1066–1072. [Google Scholar] [CrossRef]
- Bardel, M.H.; Woodman, T.; Perreaut-Pierre, E.; Barizien, N. The role of athletes’ pain-related anxiety in pain-related attentional processes. Anxiety Stress Coping 2013, 26, 573–583. [Google Scholar] [CrossRef]
- Tripp, D.A.; Stanish, W.; Ebel-Lam, A.; Brewer, B.W.; Birchard, J. Fear of reinjury, negative affect, and catastrophizing predicting return to sport in recreational athletes with anterior cruciate ligament injuries at 1 year post-surgery. Rehabil. Psychol. 2007, 52, 74. [Google Scholar] [CrossRef]
- Roelofs, J.; Peters, M.L.; McCracken, L.; Vlaeyen, J.W. The pain vigilance and awareness questionnaire (PVAQ): Further psychometric evaluation in fibromyalgia and other chronic pain syndromes. Pain 2003, 101, 299–306. [Google Scholar] [CrossRef]
- Heidari, F.; Afshari, M.; Moosazadeh, M. Prevalence of fibromyalgia in general population and patients, a systematic review and meta-analysis. Rheumatol. Int. 2017, 37, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Raichlen, D.A.; Alexander, G.E. Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci. 2017, 40, 408–421. [Google Scholar] [CrossRef]
- Diamond, J.M. The worst mistake in the history of the human race. Discover 1987, 8, 64–66. [Google Scholar]
- Gevirtz, C. Repetitive Strain Injury: Pain management considerations. Top. Pain Manag. 2011, 27, 1–7. [Google Scholar] [CrossRef]
- Lira, M.R.; da Silva, R.R.L.; Bataglion, C.; dos Santos Aguiar, A.; Greghi, S.M.; Chaves, T.C. Multiple diagnoses, increased kinesiophobia?-Patients with high kinesiophobia levels showed a greater number of temporomandibular disorder diagnoses. Musculoskelet. Sci. Pract. 2019, 44, 102054. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Pers, Y.M.; Mercier, G.; Cambiere, J.P.; Frasson, N.; Ster, F.; Hérisson, C.; Blotman, F. The importance of fear, beliefs, catastrophizing and kinesiophobia in chronic low back pain rehabilitation. Ann. Phys. Rehabil. Med. 2010, 53, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, T.; Aussieker, T.; Holwerda, A.; Parise, G.; van Loon, L.J.; Verdijk, L.B. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol. 2020, 229, e13465. [Google Scholar] [CrossRef]
- Tozzi, P. Does fascia hold memories? J. Bodyw. Mov. Ther. 2014, 18, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Pontzer, H.; Wood, B.M.; Raichlen, D.A. Hunter-gatherers as models in public health. Obes. Rev. 2018, 19, 24–35. [Google Scholar] [CrossRef]
- Wilson, P.R.; Stanton-Hicks, M.; Bruehl, S.; Harden, R.N. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 2007, 8, 326–331. [Google Scholar]
- Eldufani, J.; Elahmer, N.; Blaise, G. A medical mystery of complex regional pain syndrome. Heliyon 2020, 6, e03329. [Google Scholar] [CrossRef]
- Bélanger, C.; Morin, B.B.; Brousseau, A.; Gagné, N.; Tremblay, A.; Daigle, K.; Goffaux, P.; Léonard, G. Unpredictable pain timings lead to greater pain when people are highly intolerant of uncertainty. Scand. J. Pain 2017, 17, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Bergamin, J.A. Being-in-the-flow: Expert coping as beyond both thought and automaticity. Phenomenol. Cogn. Sci. 2017, 16, 403–424. [Google Scholar] [CrossRef] [Green Version]
- Stamatelopoulou, F.; Pezirkianidis, C.; Karakasidou, E.; Lakioti, A.; Stalikas, A. “Being in the Zone”: A Systematic Review on the Relationship of Psychological Correlates and the Occurrence of Flow Experiences in Sports’ Performance. Psychology 2018, 9, 2011–2030. [Google Scholar] [CrossRef] [Green Version]
- Hauser, T. The Black Lights: Inside the World of Professional Boxing; University of Arkansas Press: Fayetteville, NC, USA, 2000. [Google Scholar]
- Jackson, S.A. Factors influencing the occurrence of flow state in elite athletes. J. Appl. Sport Psychol. 1995, 7, 138–166. [Google Scholar] [CrossRef]
- Leźnicka, K.; Pawlak, M.; Białecka, M.; Safranow, K.; Cięszczyk, P. Pain perception and cardiovascular system response among athletes playing contact sports. Res. Sports Med. 2017, 25, 290–299. [Google Scholar] [CrossRef]
- Shirazibeheshti, A.; Cooke, J.; Chennu, S.; Adapa, R.; Menon, D.K.; Hojjatoleslami, S.A.; Witon, A.; Li, L.; Bekinschtein, T.; Bowman, H. Placing meta-stable states of consciousness within the predictive coding hierarchy: The deceleration of the accelerated prediction error. Conscious. Cogn. 2018, 63, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Diaz, K.M.; Howard, V.J.; Hutto, B.; Colabianchi, N.; Vena, J.E.; Safford, M.M.; Blair, S.N.; Hooker, S.P. Patterns of sedentary behavior and mortality in US middle-aged and older adults: A national cohort study. Ann. Intern. Med. 2017, 167, 465–475. [Google Scholar] [CrossRef]
- Hu, F.B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38, 103–108. [Google Scholar] [CrossRef]
- De Bruin, L.; Michael, J. Prediction error minimization as a framework for social cognition research. Erkenntnis 2018, 86, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Zügel, M.; Maganaris, C.N.; Wilke, J.; Jurkat-Rott, K.; Klingler, W.; Wearing, S.C.; Findley, T.; Barbe, M.F.; Steinacker, J.M.; Vleeming, A.; et al. Fascial tissue research in sports medicine: From molecules to tissue adaptation, injury and diagnostics: Consensus statement. Br. J. Sports Med. 2018, 52, 1497. [Google Scholar] [CrossRef] [Green Version]
- Littlejohn, G.; Guymer, E. Key milestones contributing to the understanding of the mechanisms underlying fibromyalgia. Biomedicines 2020, 8, 223. [Google Scholar] [CrossRef]
- Lavery, M.J.; Stull, C.; Kinney, M.O.; Yosipovitch, G. Nocturnal pruritus: The battle for a peaceful night’s sleep. Int. J. Mol. Sci. 2016, 17, 425. [Google Scholar] [CrossRef] [Green Version]
- Metzinger, T. Empirical perspectives from the self-model theory of subjectivity: A brief summary with examples. Prog. Brain Res. 2008, 168, 215–245. [Google Scholar] [PubMed]
- Allen, M.; Tsakiris, M. The body as first prior: Interoceptive predictive processing and the primacy. In The Interoceptive Mind: From Homeostasis to Awareness; Tsakiris, M., De Preester, H., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 27–45. [Google Scholar]
- Sedley, W.; Friston, K.J.; Gander, P.E.; Kumar, S.; Griffiths, T.D. An integrative tinnitus model based on sensory precision. Trends Neurosci. 2016, 39, 799–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haslam, N. Unicorns, snarks, and personality types: A review of the first 102 taxometric studies of personality. Aust. J. Psychol. 2019, 71, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Soares, H.R.; Pinheiro, A.R.; Crasto, C.; Barbosa, P.; Dias, N.; de Carvalho, P. Diagnostic ultrasound assessment of deep fascia sliding mobility in vivo: A scoping review—Part 1: Thoracolumbar and abdominal fasciae. J. Bodyw. Mov. Ther. 2021, 27, 92–102. [Google Scholar] [CrossRef]
- Baumgartner, M. Parsimony and causality. Qual. Quant. 2015, 49, 839–856. [Google Scholar] [CrossRef]
- Puvanasvaran, A.P.; Jamibollah, N.; Norazlin, N. Integration of poka yoke into process failure mode and effect analysis: A case study. Am. J. Appl. Sci. 2014, 11, 1332. [Google Scholar] [CrossRef]
- Parker, S.; Wall, T.D. Job and Work Design: Organizing Work to Promote Well-Being and Effectiveness; Sage: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Joly, M.P.; Teixeira, J.G.; Patrício, L.; Sangiorgi, D. Leveraging service design as a multidisciplinary approach to service innovation. J. Serv. Manag. 2019, 30, 681–715. [Google Scholar] [CrossRef] [Green Version]
- Rufa, A.; Beissner, K.; Dolphin, M. The use of pain neuroscience education in older adults with chronic back and/or lower extremity pain. Physiother. Theory Pract. 2019, 35, 603–613. [Google Scholar] [CrossRef]
- Gardner, J.; Samuel, G.; Williams, C. Sociology of low expectations: Recalibration as innovation work in biomedicine. Sci. Technol. Hum. Values 2015, 40, 998–1021. [Google Scholar] [CrossRef]
- Gardner, J. Managing expectations, aligning futures. In Rethinking the Clinical Gaze; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 145–167. [Google Scholar]
- Witiw, C.D.; Mansouri, A.; Mathieu, F.; Nassiri, F.; Badhiwala, J.H.; Fessler, R.G. Exploring the expectation-actuality discrepancy: A systematic review of the impact of preoperative expectations on satisfaction and patient reported outcomes in spinal surgery. Neurosurg. Rev. 2018, 41, 19–30. [Google Scholar] [CrossRef]
- Hills, R.; Kitchen, S. Toward a theory of patient satisfaction with physiotherapy: Exploring the concept of satisfaction. Physiother. Theory Pract. 2007, 23, 243–254. [Google Scholar] [CrossRef]
- Perini, L. Explanation in two dimensions: Diagrams and biological explanation. Biol. Philos. 2005, 20, 257–269. [Google Scholar] [CrossRef]
- Shaw, J.; Dunnm, S.; Heinrich, P. Managing the delivery of bad news: An in-depth analysis of doctors’ delivery style. Patient Educ. Couns. 2012, 87, 186–192. [Google Scholar] [CrossRef]
- Verheul, W.; Sanders, A.; Bensing, J. The effects of physicians’ affect-oriented communication style and raising expectations on analogue patients’ anxiety, affect and expectancies. Patient Educ. Couns. 2010, 80, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Button, A.; Merk, D.; Hiss, J.A.; Schneider, G. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat. Mach. Intell. 2019, 1, 307–315. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhao, D.; Chen, Y. Lane change decision-making through deep reinforcement learning with rule-based constraints. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019; p. N-2051. [Google Scholar]
- Martin-Maroto, F.; Polavieja, G.G. Algebraic Machine Learning. arXiv 2018, arXiv:1803.05252. [Google Scholar]
- Kirchhoff, M. Predictive brains and embodied, enactive cognition: An introduction to the special issue. Synthese 2018, 195, 2355–2366. [Google Scholar] [CrossRef] [Green Version]
- Ramstead, M.J.D.; Badcock, P.B.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Badcock, P.B.; Friston, K.J.; Ramstead, M.J. The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Phys. Life Rev. 2019, 31, 104–121. [Google Scholar] [CrossRef]
- Newen, A.; Bruin, L.; Gallagher, S. (Eds.) Oxford Handbook of 4E Cognition; Oxford Library of Psychology, Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Hipólito, I.; Baltieri, M.; Friston, K.; Ramstead, M.J. Embodied skillful performance: Where the action is. Synthese 2021, 1–25. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Brass, M. How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports and motor expertise. J. Physiol.-Paris 2015, 109, 53–63. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Graebner, M.E. Theory building from cases: Opportunities and challenges. Acad. Manag. J. 2007, 50, 25–32. [Google Scholar] [CrossRef]
Critical Realist Non-Conscious Generative Causal Mechanism | Low Pain Non-Conscious Generative Mechanism | High Pain Non-Conscious Generative Mechanism | |
---|---|---|---|
Tendencies | Personality type | Not prone to pain anxiety | Prone to pain anxiety |
Hardiness level | High | Low | |
Powers | Fascia densification | Minor fascia densification | Widespread fascia densification |
Body memories | Fast recovery from local pain | Widespread persistent pain |
Two Different Non-Conscious Generative Causal Mechanisms | PGNW Constructs | ||
---|---|---|---|
Top-Down | Bottom-Up | Intermediate | |
Prior Expectations Consistency | Sensory Signals Strength | Attention-Based Modulation | |
Low pain non-conscious generative causal mechanism | Specific acute pain only during work continued briefly after initial pain | Directly related to physical impact during specific work activity | Attention elsewhere Forgetting |
High pain non-conscious generative causal mechanism | Eventually, chronic body-wide pain throughout daily life irrespective of type of movement or whether there is any movement | Eventually, strength of bottom-up signals is not directly related to particular movements or to lack of movements | Eventually, hypervigilance to body-wide pain |
Non-Conscious Generative Causal Mechanism (Meta Generative Model) | PGNW Constructs | |||
---|---|---|---|---|
Top-Down | Bottom-Up | Intermediate | ||
Consistency of Prior Expectations | Strength of Sensory Signals | Attention-Based Modulation | ||
Tendencies | Personality type Hardiness level | How do interactions between them, fascia and body memory affect expectations? | To what extent, if any, do they affect rate and spread of fascia densification? | How do interactions between them, fascia and body memory affect attention? |
Powers | Fascia densification Body memory | How does fascia hold and update body memory in the forming of expectations? | How does fascia densification affect intero, noci-, and proprioception? | How does interaction between fascia and body memory affect attention? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, S. Psychomotor Predictive Processing. Entropy 2021, 23, 806. https://doi.org/10.3390/e23070806
Fox S. Psychomotor Predictive Processing. Entropy. 2021; 23(7):806. https://doi.org/10.3390/e23070806
Chicago/Turabian StyleFox, Stephen. 2021. "Psychomotor Predictive Processing" Entropy 23, no. 7: 806. https://doi.org/10.3390/e23070806