Performance Improvement of Atmospheric Continuous-Variable Quantum Key Distribution with Untrusted Source
Abstract
:1. Introduction
2. ACVQKD with Untrusted Source and Its Improved Approach
2.1. ACVQKD with Untrusted Source
2.2. Photon Subtraction Operation
3. Calculation of the Secret Key Rate
4. Performance Analysis and Disscussion
4.1. Fluctuating Loss Due to the Atmospheric Environment
4.2. Parameter Optimization
4.3. The Impact of Signal Source Location and Photon Subtraction Operation on ACVQKD
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photon. 2020, 12, 1012–1236. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Xiao, G.; Zhong, H.; Guo, Y. Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution. New J. Phys. 2020, 22, 083086. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, H.J.; Zhu, L.J.; Guo, Y. Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 2021, 103, 032410. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Bang, J.Y.; Berger, M.S. Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 2006, 74, 125012. [Google Scholar] [CrossRef] [Green Version]
- Wootter, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [Green Version]
- Grosshans, F. Collective Attacks and Unconditional Security in Continuous Variable Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 020504. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A.; García-Patón, R.; Renner, R.; Cerf, N.J. Security of Continuous-Variable Quantum Key Distribution Against General Attacks. Phys. Rev. Lett. 2013, 110, 030502. [Google Scholar] [CrossRef] [Green Version]
- Papanastasiou, P.; Pirandola, S. Continuous-variable quantum cryptography with discrete alphabets: Composable security under collective Gaussian attacks. Phys. Rev. Res. 2021, 3, 013047. [Google Scholar] [CrossRef]
- Matsuura, T.; Maeda, K.; Sasaki, T.; Koashi, M. Finite-size security of continuous-variable quantum key distribution with digital signal processing. Nat. Commun. 2021, 12, 252. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.Z.; Pan, J.W. Quantum Science Experimental Satellite “Micius”. Bull. Chin. Acad. Sci. 2016, 31, 1096. [Google Scholar]
- Pirandola, S. Satellite Quantum Communications:Fundamental Bounds and Practical Security. Phys. Rev. Res. 2021, 3, 023130. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Joshi, S.K.; Gundogan, M.; Brougham, T.; Lowndes, D.; Mazzarella, L.; Krutzik, M.; Mohapatra, S.; Dequal, D.; Vallone, G.; et al. Advances in Space Quantum Communications. IET Quantum Commun. 2021. under review. [Google Scholar]
- Hosseinidehaj, N.; Malaney, R. Erratum: Gaussian entanglement distribution via satellite. Phys. Rev. A 2016, 93, 069902. [Google Scholar] [CrossRef] [Green Version]
- Derkach, I.; Usenko, V.C. Applicability of Squeezed- and Coherent-State Continuous-Variable Quantum Key Distribution over Satellite Links. Entropy 2021, 23, 55. [Google Scholar] [CrossRef]
- Dequal, D.; Vidarte, L.T.; Rodriguez, V.R.; Vallone, G.; Villoresi, P.; Leverrier, A.; Diamanti, E. Feasibility of satellite-to-ground continuous-variable quantum key distribution. NPJ Quantum Inf. 2021, 7, 3. [Google Scholar] [CrossRef]
- Pirandola, S. Limits and security of free-space quantum communications. Phys. Rev. A 2021, 3, 013279. [Google Scholar]
- Hosseinidehaj, N.; Walk, N.; Ralph, T.C. Composable finite-size effects in free-space continuous-variable quantum-key-distribution systems. Phys. Rev. A 2021, 103, 012605. [Google Scholar] [CrossRef]
- Zunino, L.; Gulich, D.; Funes, G.; Perez, D.G. Turbulence-induced persistence in laser beam wandering. Opt. Lett. 2015, 40, 3145. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Liao, Q.; Huang, D.; Guo, Y. Performance analysis of the satellite-to-ground continuous-variable quantum key distribution with orthogonal frequency division multiplexed modulation. Quantum Inf. Process. 2019, 18, 2147. [Google Scholar] [CrossRef]
- Peng, Q.Q.; Liao, Q.; Guo, Y. Improving Continuous-Variable Quantum Key Distribution in a Turbulent Atmospheric Channel via Photon Subtraction. Int. J. Theor. Phys. 2019, 19, 4327. [Google Scholar] [CrossRef]
- Liao, Q.; Guo, Y.; Wang, Y.; Huang, D. Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express. 2018, 26, 019907. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C. Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 2013, 87, 022308. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Xiao, G.; Xu, C.G.; Xu, Y.; Guo, Y. Discretely modulated continuous-variable quantum key distribution with an untrusted entanglement source. Phys. Rev. A 2020, 102, 032604. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, E.; Knight, P.L.; Jeong, H. Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 2005, 71, 043805. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; He, G.; Fang, J.; Zeng, G.H. Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 2013, 87, 012317. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liao, Q.; Wang, Y.J.; Huang, D.; Huang, P.; Zeng, G.H. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 2017, 95, 032304. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.M.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability Criterion for Continuous Variable Systems. Phys. Rev. Lett. 2000, 84, 2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, S.; Majumdar, A.S.; Nayak, N. Teleportation of two-mode squeezed states. Phys. Rev. A 2008, 77, 012337. [Google Scholar] [CrossRef] [Green Version]
- Eisaman, M.D.; Fan, J.; Migdall, A.; Polyakov, S.V. Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 071101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, Y.; Wang, X.; Xu, B.; Peng, X.; Guo, H. Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 2016, 93, 012310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.J.; Xiao, C.; Zhou, C.; Wang, X.; Yao, J.S.; Zhang, H.L.; Bao, W.S. Performance analysis of the continuous-variable measurementdeviceindependent quantum key distribution under diverse weather conditions. Chin. Phys. B 2019, 29, 020301. [Google Scholar] [CrossRef]
- Qian, X.M.; Zhu, W.Y.; Rao, R.Z. Intensity distribution properties of Gaussian vortex beam propagation in atmospheric turbulence. Chin. Phys. B 2015, 24, 044201. [Google Scholar] [CrossRef]
- Vasylyev, D.Y.; Semenov, A.A.; Vogel, W. Toward Global Quantum Communication: Beam Wandering Preserves Nonclassicality. Phys. Rev. Lett. 2012, 108, 220501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Jin, C.H.; Shi, J.H.; Guo, J.S.; Zou, X.B.; Guo, G.C. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel. Chin. Phys. Lett. 2017, 34, 040302. [Google Scholar] [CrossRef]
- Jakeman, E.; Ridley, K.D. A Review Of “Modeling Fluctuations in Scattered Waves”. Wave Random Complex 2007, 17, 405–406. [Google Scholar] [CrossRef]
- Berman, G.P.; Chumak, A.A.; Gorshkov, V.N. Beam wandering in the atmosphere: The effect of partial coherence. Phys. Rev. E 2007, 76, 056606. [Google Scholar] [CrossRef] [Green Version]
- Usenko, V.C.; Heim, B.; Peuntinger, C.; Wittmann, C.; Marquardt, C.; Leuchs, G.; Filip, R. Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels. New J. Phys. 2012, 14, 093048. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 150433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
h | W | |||
---|---|---|---|---|
1/12 | 0.9 | 1 | 0.5 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Xiao, G.; Peng, S. Performance Improvement of Atmospheric Continuous-Variable Quantum Key Distribution with Untrusted Source. Entropy 2021, 23, 760. https://doi.org/10.3390/e23060760
Liao Q, Xiao G, Peng S. Performance Improvement of Atmospheric Continuous-Variable Quantum Key Distribution with Untrusted Source. Entropy. 2021; 23(6):760. https://doi.org/10.3390/e23060760
Chicago/Turabian StyleLiao, Qin, Gang Xiao, and Shaoliang Peng. 2021. "Performance Improvement of Atmospheric Continuous-Variable Quantum Key Distribution with Untrusted Source" Entropy 23, no. 6: 760. https://doi.org/10.3390/e23060760
APA StyleLiao, Q., Xiao, G., & Peng, S. (2021). Performance Improvement of Atmospheric Continuous-Variable Quantum Key Distribution with Untrusted Source. Entropy, 23(6), 760. https://doi.org/10.3390/e23060760