Reply to Pessoa, P.; Arderucio Costa, B. Comment on “Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17”
Abstract
:1. Relevant Misunderstanding
2. About Entropic Additivity and Extensivity
3. Other Debatable Statements
Funding
Acknowledgments
Conflicts of Interest
References and Note
- Pessoa, P.; Costa, B.A. Comment on “Black hole entropy: A closer look”. Entropy 2020, 22, 1110. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Tsallis, C. Black hole entropy: A closer look. Entropy 2020, 22, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wald, R.M. The thermodynamics of black holes. Living Rev. Relativ. 2001, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, S.D. The information paradox and the infall problem. Class. Quantum Grav. 2011, 28, 125010. [Google Scholar] [CrossRef]
- Hayden, P.; Headrick, M.; Maloney, A. Holographic mutual information is monogamous. Phys. Rev. D 2013, 87, 046003. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D 2013, 88, 083534. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Kimura, S. Evolution of the universe in entropic cosmologies via different formulations. Phys. Rev. D 2014, 89, 123501. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Nezami, S.; Ooguri, H.; Stoica, B.; Sully, J.; Walter, M. The holographic entropy cone. J. High Energy Phys. 2015, 9, 130. [Google Scholar] [CrossRef]
- Dong, X. The gravity dual of Renyi entropy. Nat. Comm. 2016, 7, 12472. [Google Scholar] [CrossRef] [Green Version]
- Majhi, A. Non-extensive statistical mechanics and black hole entropy from quantum geometry. Phys. Lett. B 2017, 775, 32. [Google Scholar] [CrossRef]
- Cabero, M.; Capano, C.D.; Fischer-Birnholtz, O.; Krishnan, B.; Nielsen, A.B.; Nitz, A.H.; Biwer, C.M. Observational tests of the black hole area increase law. Phys. Rev. D 2018, 97, 124069. [Google Scholar] [CrossRef] [Green Version]
- Sheykhi, A. Modified Friedmann equations from Tsallis entropy. Phys. Lett. B 2018, 785, 118. [Google Scholar] [CrossRef]
- Lymperis, A.; Saridakis, E.N. Modified cosmology through nonextensive horizon thermodynamics. Eur. Phys. J. C 2018, 78, 993. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, S.; Moradpour, H.; Lobo, I.P.; Graca, J.P.M.; Bezerra, V.B. Tsallis holographic dark energy in the Brans-Dicke cosmology. Eur. Phys. J. C 2018, 78, 706. [Google Scholar] [CrossRef]
- Zadeh, M.A.; Sheykhi, A.; Moradpour, H.; Bamba, K. Tsallis holographic dark energy. Phys. Lett. B 2018, 781, 195–200. [Google Scholar] [CrossRef]
- Zadeh, M.A.; Sheykhi, A.; Moradpour, H. Thermal stability of Tsallis holographic dark energy in nonflat universe. Gen. Relativ. Gravit. 2019, 51, 12. [Google Scholar] [CrossRef]
- Sharma, U.K.; Pradhan, A. Diagnosing Tsallis holographic dark energy models with statefinder and ω-ω′ pair. Mod. Phys. Lett. A 2019, 34, 1950101. [Google Scholar] [CrossRef]
- Korunur, M. Tsallis holographic dark energy in Bianchi type-III spacetime with scalar fields. Mod. Phys. Lett. A 2019, 34, 1950310. [Google Scholar] [CrossRef]
- Dubey, V.C.; Srivastava, S.; Sharma, U.K.; Pradhan, A. Tsallis holographic dark energy in Bianchi-I Universe using hybrid expansion law with k-essence. Pramana J. Phys. 2019, 93, 78. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.B.; Chi, J.N.; Yu, Z.; Xu, D.F. Diagnosing Tsallis holographic dark energy models with interactions. Mod. Phys. Lett. A 2019, 35, 2050044. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Huang, H.; Chen, J.; Zhang, L.; Tu, F. Stability analysis of the Tsallis holographic dark energy model. Class. Quantum Grav. 2019, 36, 175001. [Google Scholar] [CrossRef]
- Aditya, Y.; Mandal, S.; Sahoo, P.K.; Reddy, D.R.K. Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans-Dicke theory. Eur. Phys. J. C 2019, 79, 1020. [Google Scholar] [CrossRef]
- Ghaffari, S.; Ziaie, A.H.; Moradpour, H.; Asghariyan, F.; Feleppa, F.; Tavayef, M. Black hole thermodynamics in Sharma-Mittal generalized entropy formalism. Gen. Relativ. Gravit. 2019, 51, 93. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.; Sharma, U.K.; Pradhan, A. Tsallis holographic dark energy in FRW universe with time varying deceleration parameter. New Astron. 2019, 73, 101281. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolfd, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energy Phys. 2019, 12, 063. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica wormholes and the entropy of Hawking radiation. J. High Energy Phys. 2020, 5, 13. [Google Scholar] [CrossRef]
- Dixit, A.; Bhardwaj, V.K.; Pradhan, A. RHDE models in FRW Universe with two IR cut-offs with redshift parametrization. Eur. Phys. J. Plus 2020, 135, 831. [Google Scholar] [CrossRef]
- Jawad, A.; Rani, S.; Hussain, M.H. Cosmological implications and thermodynamics of some reconstructed modified gravity models. Phys. Dark Universe 2020, 27, 100409. [Google Scholar] [CrossRef]
- Varshney, G.; Sharma, U.K.; Pradhan, A. Reconstructing the k-essence and the dilation field models of the THDE in f(R,T) gravity. Eur. Phys. J. Plus 2020, 135, 541. [Google Scholar] [CrossRef]
- Prasanthi, U.Y.D.; Aditya, Y. Anisotropic Renyi holographic dark energy models in general relativity. Results Phys. 2020, 17, 103101. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Interacting Tsallis and Renyi holographic dark energy with hybrid expansion law. Astrophys. Space Sci. 2020, 365, 103. [Google Scholar] [CrossRef]
- Sharma, U.K.; Dubey, V.C.; Pradhan, A. Diagnosing interacting Tsallis holographic dark energy in the non-flat universe. Int. J. Geom. Method Mod. Phys. 2020, 17, 2050032. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Sharma, U.K. Statefinder hierarchy for Tsallis holographic dark energy. New Astron. 2020, 78, 101380. [Google Scholar] [CrossRef]
- Saha, A.; Ghose, S. Interacting Tsallis holographic dark energy in higher dimensional cosmology. Astrophys. Space Sci. 2020, 365, 98. [Google Scholar] [CrossRef]
- Sharma, U.K.; Dubey, V.C. Statefinder diagnostic for the Renyi holographic dark energy. New Astron. 2020, 80, 101419. [Google Scholar] [CrossRef]
- Srivastava, S.; Dubey, V.C.; Sharma, U.K. Statefinder diagnosis for Tsallis agegraphic dark energy model with ω-ω′ pair. Intern. J. Mod. Phys. A 2020, 35, 2050027. [Google Scholar] [CrossRef]
- Sharma, U.K.; Dubey, V.C. Exploring the Sharma-Mittal HDE models with different diagnostic tools. Eur. Phys. J. Plus 2020, 135, 391. [Google Scholar] [CrossRef]
- Waheeda, S. Reconstruction paradigm in a class of extended teleparallel theories using Tsallis holographic dark energy. Eur. Phys. J. Plus 2020, 135, 11. [Google Scholar] [CrossRef]
- Sharma, U.K.; Srivastava, S.; Beesham, A. Swampland criteria and cosmological behavior of Tsallis holographic dark energy in Bianchi-III universe. Intern. J. Geom. Methods Mod. Phys. 2020, 17, 2050098. [Google Scholar] [CrossRef]
- Geng, C.Q.; Hsu, Y.T.; Lu, J.R.; Yin, L. Modified cosmology models from thermodynamical approach. Eur. Phys. J. C 2020, 80, 21. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N.; Myrzakulov, R. Correspondence of cosmology from non-extensive thermodynamics with fluids of generalized equation of state. Nucl. Phys. B 2020, 950, 114850. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A. Barrow black hole corrected-entropy model and Tsallis nonextensivity. Phys. Lett. B 2020, 810, 135805. [Google Scholar] [CrossRef]
- Mamon, A.A. Study of Tsallis holographic dark energy model in the framework of fractal cosmology. Mod. Phys. Lett. A 2020, 35, 2050251. [Google Scholar] [CrossRef]
- Ens, P.S.; Santos, A.F. f(R) gravity and Tsallis holographic dark energy. EPL Europhys. Lett. 2020, 131, 40007. [Google Scholar] [CrossRef]
- Promsiri, C.; Hirunsirisawat, E.; Liewrian, W. Thermodynamics and van der Waals phase transition of charged black holes in flat space via Renyi statistics. Phys. Rev. D 2020, 102, 064014. [Google Scholar] [CrossRef]
- Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica wormholes and the black hole interior. arXiv 2020, arXiv:1911.11977. [Google Scholar]
- Sharma, U.K.; Srivastava, V. Tsallis HDE with an IR cutoff as Ricci horizon in a flat FLRW Universe. New Astron. 2021, 84, 101519. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 193. [Google Scholar] [CrossRef]
- Maddox, J. When entropy does not seem extensive. Nature 1993, 365, 103. [Google Scholar] [CrossRef]
- Das, S.; Shankaranarayanan, S. How robust is the entanglement entropy-area relation? Phys. Rev. D 2006, 73, 121701. [Google Scholar] [CrossRef] [Green Version]
- Kolekar, S.; Padmanabhan, T. Ideal gas in a strong gravitational field: Area dependence of entropy. Phys. Rev. D 2011, 83, 064034. [Google Scholar] [CrossRef] [Green Version]
- Cirto, L.J.L.; Assis, V.R.V.; Tsallis, C. Influence of the interaction range on the thermostatistics of a classical many-body system. Physica A 2014, 393, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Cirto, L.J.L.; Rodriguez, A.; Nobre, F.D.; Tsallis, C. Validity and failure of the Boltzmann weight. EPL Europhys. Lett 2018, 123, 30003. [Google Scholar] [CrossRef] [Green Version]
- Nobre, F.D.; Tsallis, C. Classical infinite-range-interaction Heisenberg ferromagnetic model: Metastability and sensitivity to initial conditions. Phys. Rev. E 2003, 68, 036115. [Google Scholar] [CrossRef] [Green Version]
- Nobre, F.D.; Tsallis, C. Metastable states of the classical inertial infinite-range-interaction Heisenberg ferromagnet: Role of initial conditions. Physica A 2004, 344, 587. [Google Scholar] [CrossRef] [Green Version]
- Cirto, L.J.L.; Lima, L.S.; Nobre, F.D. Controlling the range of interactions in the classical inertial ferromagnetic Heisenberg model: Analysis of metastable states. J. Stat. Mech. 2015, 2015, P04012. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Nobre, F.D.; Tsallis, C. d-Dimensional classical Heisenberg model with arbitrarily-ranged interactions: Lyapunov exponents and distributions of momenta and energies. Entropy 2019, 21, 31. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Nobre, F.D.; Tsallis, C. Quasi-stationary-state duration in d-dimensional long-range model. Phys. Rev. Res. 2020, 2, 023153. [Google Scholar] [CrossRef]
- Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi-Pasta-Ulam model with long-range interactions: Dynamics and thermostatistics. EPL Europhys. Lett 2014, 108, 40006. [Google Scholar] [CrossRef] [Green Version]
- Christodoulidi, H.; Bountis, T.; Tsallis, C.; Drossos, L. Dynamics and Statistics of the Fermi–Pasta–Ulam β–model with different ranges of particle interactions. J. Stat. Mech. Theory Exp. 2016, 2016, 123206. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, D.; Tsallis, C. Sensitivity to initial conditions of d-dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling. Phys. Rev. E 2016, 93, 062213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, D.; Tsallis, C. Long-ranged Fermi-Pasta-Ulam systems in thermal contact: Crossover from q-statistics to Boltzmann-Gibbs statistics. Phys. Lett. A 2017, 381, 1123–1128. [Google Scholar] [CrossRef]
- Bagchi, D. Thermal transport in the Fermi-Pasta-Ulam model with long-range interactions. Phys. Rev. E 2017, 95, 032102. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, D.; Tsallis, C. Fermi-Pasta-Ulam-Tsingou problems: Passage from Boltzmann to q-statistics. Physica A 2018, 491, 869–873. [Google Scholar] [CrossRef] [Green Version]
- Macias-Diaz, J.E.; Bountis, A. Supratransmission in β-Fermi-Pasta-Ulam chains with different ranges of interactions. Commun. Nonlinear Sci. Numer. Simul. 2018, 63, 307–321. [Google Scholar] [CrossRef]
- Carati, A.; Galgani, L.; Gangemi, F.; Gangemi, R. Relaxation times and ergodicity properties in a realistic ionic-crystal model, and the modern form of the FPU problem. Physica A 2019, 532, 121911. [Google Scholar] [CrossRef] [Green Version]
- Carati, A.; Galgani, L.; Gangemi, F.; Gangemi, R. Approach to equilibrium via Tsallis distributions in a realistic ionic-crystal model and in the FPU model. Eur. Phys. J. Spec. Top. 2020, 229, 743–749. [Google Scholar] [CrossRef]
- Grigera, J.R. Extensive and non-extensive thermodynamics. A molecular dynamic test. Phys. Lett. A 1996, 217, 47. [Google Scholar] [CrossRef]
- Curilef, S.; Tsallis, C. Critical temperature and nonextensivity in long-range-interacting Lennard-Jones-like fluids. Phys. Lett. A 1999, 264, 270. [Google Scholar] [CrossRef] [Green Version]
- Borges, E.P.; Tsallis, C. Negative specific heat in a Lennard-Jones-like gas with long-range interactions. Physica A 2002, 305, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Kadijani, M.N.; Abbasi, H.; Nezamipour, S. Molecular dynamics simulation of gas models of Lennard-Jones type of interactions: Extensivity associated with interaction range and external noise. Physica A 2017, 475, 35–45. [Google Scholar] [CrossRef]
- Jund, P.; Kim, S.G.; Tsallis, C. Crossover from extensive to nonextensive behavior driven by long-range interactions. Phys. Rev. B 1995, 52, 50. [Google Scholar] [CrossRef] [PubMed]
- Cannas, S.A.; Tamarit, F.A. Long-range interactions and non-extensivity in ferromagnetic spin systems. Phys. Rev. B 1996, 54, R12661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, L.C.; de Albuquerque, M.P.; Menezes, F.S.D. Nonextensivity and Tsallis statistics in magnetic systems. Phys. Rev. B 1997, 55, 5611. [Google Scholar] [CrossRef] [Green Version]
- Anteneodo, C.; Tsallis, C. Breakdown of the exponential sensitivity to the initial conditions: Role of the range of the interaction. Phys. Rev. Lett. 1998, 80, 5313. [Google Scholar] [CrossRef]
- Campa, A.; Giansanti, A.; Moroni, D.; Tsallis, C. Classical spin systems with long-range interactions: Universal reduction of mixing. Phys. Lett. A 2001, 286, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.F.S.; Pinho, S.T.R. Tsallis scaling and the long-range Ising chain: A transfer matrix approach. Phys. Rev. E 2005, 71, 026126. [Google Scholar] [CrossRef] [PubMed]
- Del Pino, L.A.; Troncoso, P.; Curilef, S. Thermodynamics from a scaling Hamiltonian. Phys. Rev. B 2007, 76, 172402. [Google Scholar] [CrossRef] [Green Version]
- Condat, C.A.; Rangel, J.; Lamberti, P.W. Anomalous diffusion in the nonasymptotic regime. Phys. Rev. E 2002, 65, 026138. [Google Scholar] [CrossRef]
- Rego, H.H.A.; Lucena, L.S.; da Silva, L.R.; Tsallis, C. Crossover from extensive to nonextensive behavior driven by long-range d=1 bond percolation. Physica A 1999, 266, 42. [Google Scholar] [CrossRef]
- Fulco, U.L.; da Silva, L.R.; Nobre, F.D.; Rego, H.H.A.; Lucena, L.S. Effects of site dilution on the one-dimensional long-range bond-percolation problem. Phys. Lett. A 2003, 312, 331. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Gell-Mann, M.; Steinberg, S. Generalization of symmetric α-stable Lévy distributions for q>1. J. Math. Phys. 2010, 51, 033502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, G.; Tsallis, C. Towards a large deviation theory for strongly correlated systems. Phys. Lett. A 2012, 376, 2451–2454. [Google Scholar] [CrossRef]
- Touchette, H. Comment on “Towards a large deviation theory for strongly correlated systems”. Phys. Lett. A 2013, 377, 436–438. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Tsallis, C. Reply to Comment on “Towards a large deviation theory for strongly correlated systems”. Phys. Lett. A 2013, 377, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Gell-Mann, M.; Sato, Y. Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive. Proc. Natl. Acad. Sci. USA 2005, 102, 15377. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Nonextensive Statistical Mechanics and Thermodynamics. Available online: http://tsallis.cat.cbpf.br/biblio.htm (accessed on 15 April 2021).
- Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167. [Google Scholar]
- Santos, R.J.V. Generalization of Shannon’ s theorem for Tsallis entropy. J. Math. Phys. 1997, 38, 4104. [Google Scholar] [CrossRef]
- Abe, S. Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A 2000, 271, 74. [Google Scholar] [CrossRef] [Green Version]
- Topsoe, F. Factorization and escorting in the game-theoretical approach to non-extensive entropy measures. Physica A 2006, 365, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.; Ohara, A.; Matsuzoe, H. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries. Physica A 2012, 391, 4308–4319. [Google Scholar] [CrossRef]
- Biro, T.S.; Van, P. Zeroth law compatibility of nonadditive thermodynamics. Phys. Rev. E 2011, 83, 061147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, P.; Barnafoldi, G.G.; Biro, T.S.; Urmossy, K. Nonadditive thermostatistics and thermodynamics. J. Phys. Conf. Ser. 2012, 394, 012002. [Google Scholar] [CrossRef]
- Biro, T.S.; Barnafoldi, G.G.; Van, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [Google Scholar] [CrossRef] [Green Version]
- Biro, T.S.; Barnafoldi, G.G.; Van, P.; Urmossy, K. Statistical power law due to reservoir fluctuations and the universal thermostat independence principle. Entropy 2014, 16, 6497–6514. [Google Scholar] [CrossRef]
- Biro, T.S.; Barnafoldi, G.G.; Van, P. New entropy formula with fluctuating reservoir. Physica A 2015, 417, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Enciso, A.; Tempesta, P. Uniqueness and characterization theorems for generalized entropies. J. Stat. Mech. 2017, 2017, 123101. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Haubold, H.J. Boltzmann-Gibbs entropy is sufficient but not necessary for the likelihood factorization required by Einstein. EPL Europhys. Lett. 2015, 110, 30005. [Google Scholar] [CrossRef]
- Tirnakli, U.; Tsallis, C.; Ay, N. Approaching a large deviation theory for complex systems. arXiv 2010, arXiv:2010.09508v1. [Google Scholar]
- In the book of J.W. Gibbs, Elementary Principles in Statistical Mechanics—Developed with Especial Reference to the Rational Foundation of Thermodynamics (C. Scribner’s Sons: New York, NY, USA, 1902; Yale University Press: New Haven, CT, USA, 1948; OX Bow Press, Woodbridge, CT, USA, 1981), and also The Collected Works. Vol. 1. Thermodynamics (Yale University Press, 1948), Gibbs wrote: “In treating of the canonical distribution, we shall always suppose the multiple integral in Equation (92) [the partition function, as we call it nowadays] to have a finite value, as otherwise the coefficient of probability vanishes, and the law of distribution becomes illusory. This will exclude certain cases, but not such apparently, as will affect the value of our results with respect to their bearing on thermodynamics. It will exclude, for instance, cases in which the system or parts of it can be distributed in unlimited space [...]. It also excludes many cases in which the energy can decrease without limit, as when the system contains material points which attract one another inversely as the squares of their distances. [...]. For the purposes of a general discussion, it is sufficient to call attention to the assumption implicitly involved in the formula (92).”
- Antonov, V.A. Solution of the problem of stability of stellar system Emden’s density law and the spherical distribution of velocities. Vestn. Leningr. Univ. 1962, 7, 135, English Translation in Dynamics of Star Clusters; Goodman, J., Hut, P., Ed.; Reidel: Dordrecht, The Netherlands, 1985. [Google Scholar] [CrossRef] [Green Version]
- Plastino, A.R.; Plastino, A. Stellar polytropes and Tsallis’ entropy. Phys. Lett. A 1993, 174, 384. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Negative specific heat in Astronomy, Physics and Chemistry. Physica A 1999, 263, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K. Nonadditive entropies yield probability distributions with biases not warranted by the data. Phys. Rev. Lett. 2013, 111, 180604. [Google Scholar] [CrossRef]
- Pressé, S. Nonadditive entropy maximization is inconsistent with Bayesian updating. Phys. Rev. E 2015, 90, 052149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K. Reply to C. Tsallis’ “Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems”. Entropy 2015, 17, 5043–5046. [Google Scholar] [CrossRef] [Green Version]
- Jizba, P.; Korbel, J. Maximum entropy principle in statistical inference: Case for non-Shannonian entropies. Phys. Rev. Lett. 2019, 122, 120601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsallis, C. Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems. Entropy 2015, 17, 2853–2861. [Google Scholar] [CrossRef] [Green Version]
- Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 2008, 78, 021102. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.M.C.; Rapcan, P.; Tsallis, C. Area-law-like systems with entangled states can preserve ergodicity. Eur. Phys. J. Spec. Top. 2020, 229, 759–772. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsallis, C. Reply to Pessoa, P.; Arderucio Costa, B. Comment on “Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17”. Entropy 2021, 23, 630. https://doi.org/10.3390/e23050630
Tsallis C. Reply to Pessoa, P.; Arderucio Costa, B. Comment on “Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17”. Entropy. 2021; 23(5):630. https://doi.org/10.3390/e23050630
Chicago/Turabian StyleTsallis, Constantino. 2021. "Reply to Pessoa, P.; Arderucio Costa, B. Comment on “Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17”" Entropy 23, no. 5: 630. https://doi.org/10.3390/e23050630
APA StyleTsallis, C. (2021). Reply to Pessoa, P.; Arderucio Costa, B. Comment on “Tsallis, C. Black Hole Entropy: A Closer Look. Entropy 2020, 22, 17”. Entropy, 23(5), 630. https://doi.org/10.3390/e23050630