Advances in Atomtronics
Abstract
1. Introduction
2. Externally-Driven Devices
2.1. Atomtronic Batteries
2.2. Diodes, Transistors, and Logic Gates
3. Closed Loop Circuits
3.1. Atomtronic SQUIDs and Quantum Sensing
3.2. Quantum Computation with Atomtronics
4. Conclusions
Funding
Conflicts of Interest
References
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 2002, 415, 39–44. [Google Scholar] [CrossRef]
- Aidelsburger, M.; Atala, M.; Lohse, M.; Barreiro, J.T.; Paredes, B.; Bloch, I. Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 2013, 111, 185301. [Google Scholar] [CrossRef]
- Lee, K.L.; Gremaud, B.; Han, R.; Englert, B.G.; Miniatura, C. Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 2009, 80, 043411. [Google Scholar] [CrossRef]
- Jo, G.B.; Guzman, J.; Thomas, C.K.; Hosur, P.; Vishwanath, A.; Stamper-Kurn, D.M. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 2012, 108, 045305. [Google Scholar] [CrossRef]
- Zupancic, P.; Preiss, P.M.; Ma, R.; Lukin, A.; Tai, M.E.; Rispoli, M.; Islam, R.; Greiner, M. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 2016, 24, 13881–13893. [Google Scholar] [CrossRef] [PubMed]
- Tosto, F.; Baw Swe, P.; Nguyen, N.T.; Hufnagel, C.; Martínez Valado, M.; Prigozhin, L.; Sokolovsky, V.; Dumke, R. Optically tailored trapping geometries for ultracold atoms on a type-II superconducting chip. Appl. Phys. Lett. 2019, 114, 222601. [Google Scholar] [CrossRef]
- Henderson, K.; Ryu, C.; MacCormick, C.; Boshier, M. Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 2009, 11, 043030. [Google Scholar] [CrossRef]
- Gauthier, G.; Lenton, I.; Parry, N.M.; Baker, M.; Davis, M.; Rubinsztein-Dunlop, H.; Neely, T. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials. Optica 2016, 3, 1136–1143. [Google Scholar] [CrossRef]
- Seaman, B.; Krämer, M.; Anderson, D.; Holland, M. Atomtronics: Ultracold-atom analogs of electronic devices. Phys. Rev. A 2007, 75, 023615. [Google Scholar] [CrossRef]
- Pepino, R.; Cooper, J.; Anderson, D.; Holland, M. Atomtronic circuits of diodes and transistors. Phys. Rev. Lett. 2009, 103, 140405. [Google Scholar] [CrossRef]
- Pepino, R.; Cooper, J.; Meiser, D.; Anderson, D.; Holland, M. Open quantum systems approach to atomtronics. Phys. Rev. A 2010, 82, 013640. [Google Scholar] [CrossRef]
- Stickney, J.A.; Anderson, D.Z.; Zozulya, A.A. Transistorlike behavior of a Bose-Einstein condensate in a triple-well potential. Phys. Rev. A 2007, 75, 013608. [Google Scholar] [CrossRef]
- Zozulya, A.A.; Anderson, D.Z. Principles of an atomtronic battery. Phys. Rev. A 2013, 88, 043641. [Google Scholar] [CrossRef]
- Wright, K.C.; Blakestad, R.; Lobb, C.; Phillips, W.; Campbell, G. Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev. Lett. 2013, 110, 025302. [Google Scholar] [CrossRef] [PubMed]
- Caliga, S.C.; Straatsma, C.J.; Anderson, D.Z. Transport dynamics of ultracold atoms in a triple-well transistor-like potential. New J. Phys. 2016, 18, 025010. [Google Scholar] [CrossRef]
- Caliga, S.C.; Straatsma, C.J.; Anderson, D.Z. Experimental demonstration of an atomtronic battery. New J. Phys. 2017, 19, 013036. [Google Scholar] [CrossRef]
- Krinner, S.; Esslinger, T.; Brantut, J.P. Two-terminal transport measurements with cold atoms. J. Phys. Condens. Matter 2017, 29, 343003. [Google Scholar] [CrossRef] [PubMed]
- Krinner, S.; Stadler, D.; Husmann, D.; Brantut, J.P.; Esslinger, T. Observation of quantized conductance in neutral matter. Nature 2015, 517, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Grun, D.S.; Ymai, L.H.; Wilsmann, K.W.; Tonel, A.P.; Foerster, A.; Links, J. Integrable atomtronic interferometry. arXiv 2020, arXiv:2004.11987. [Google Scholar]
- Sinuco-León, G.; Garraway, B. Addressed qubit manipulation in radio-frequency dressed lattices. New J. Phys. 2016, 18, 035009. [Google Scholar] [CrossRef]
- Jaksch, D.; Bruder, C.; Cirac, J.I.; Gardiner, C.W.; Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 1998, 81, 3108–3111. [Google Scholar] [CrossRef]
- Lai, C.Y.; Chien, C.C. Challenges and constraints of dynamically emerged source and sink in atomtronic circuits: From closed-system to open-system approaches. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications; Whiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Pepino, R.; Teh, W.; Magness, L. Transport enhancement of irregular optical lattices with polychromatic amplitude modulation. New J. Phys. 2016, 18, 013031. [Google Scholar] [CrossRef]
- Micheli, A.; Daley, A.; Jaksch, D.; Zoller, P. Single atom transistor in a 1d optical lattice. Phys. Rev. Lett. 2004, 93, 140408. [Google Scholar] [CrossRef]
- Gajdacz, M.; Opatrnỳ, T.; Das, K.K. An atomtronics transistor for quantum gates. Phys. Lett. A 2014, 378, 1919–1924. [Google Scholar] [CrossRef][Green Version]
- Lai, W.; Ma, Y.Q.; Zhuang, L.; Liu, W. Photovoltaic Effect of Atomtronics Induced by an Artificial Gauge Field. Phys. Rev. Lett. 2019, 122, 223202. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, J.; Ruseckas, J.; Clark, C.W.; Juzeliūnas, G. Spin field effect transistors with ultracold atoms. Phys. Rev. Lett. 2008, 101, 265302. [Google Scholar] [CrossRef] [PubMed]
- Beeler, M.C.; Williams, R.A.; Jimenez-Garcia, K.; LeBlanc, L.J.; Perry, A.R.; Spielman, I.B. The spin Hall effect in a quantum gas. Nature 2013, 498, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; Braginski, A.I. The SQUID Handbook; Wiley Online Library: Hoboken, NJ, USA, 2004; Volume 1. [Google Scholar]
- Ryu, C.; Blackburn, P.; Blinova, A.; Boshier, M. Experimental realization of Josephson junctions for an atom SQUID. Phys. Rev. Lett. 2013, 111, 205301. [Google Scholar] [CrossRef]
- Jendrzejewski, F.; Eckel, S.; Murray, N.; Lanier, C.; Edwards, M.; Lobb, C.J.; Campbell, G.K. Resistive flow in a weakly interacting Bose-Einstein condensate. Phys. Rev. Lett. 2014, 113, 045305. [Google Scholar] [CrossRef]
- Ryu, C.; Samson, E.; Boshier, M.G. Quantum interference of currents in an atomtronic SQUID. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Polo, J.; Naldesi, P.; Minguzzi, A.; Amico, L. The quantum solitons atomtronic interference device. arXiv 2020, arXiv:2012.06269. [Google Scholar]
- Compagno, E.; Quesnel, G.; Minguzzi, A.; Amico, L.; Feinberg, D. Multimode N00N states in driven atomtronic circuits. Phys. Rev. Res. 2020, 2, 043118. [Google Scholar] [CrossRef]
- Gallemí, A.; Mateo, A.M.; Mayol, R.; Guilleumas, M. Coherent quantum phase slip in two-component bosonic atomtronic circuits. New J. Phys. 2015, 18, 015003. [Google Scholar] [CrossRef]
- Aghamalyan, D.; Nguyen, N.; Auksztol, F.; Gan, K.; Valado, M.M.; Condylis, P.; Kwek, L.; Dumke, R.; Amico, L. An atomtronic flux qubit: A ring lattice of Bose–Einstein condensates interrupted by three weak links. New J. Phys. 2016, 18, 075013. [Google Scholar] [CrossRef]
- Safaei, S.; Grémaud, B.; Dumke, R.; Kwek, L.C.; Amico, L.; Miniatura, C. Two-dimensional network of atomtronic qubits. Phys. Rev. A 2018, 97, 042306. [Google Scholar] [CrossRef]
- Amico, L.; Aghamalyan, D.; Auksztol, F.; Crepaz, H.; Dumke, R.; Kwek, L.C. Superfluid qubit systems with ring shaped optical lattices. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Eckel, S.; Lee, J.G.; Jendrzejewski, F.; Murray, N.; Clark, C.W.; Lobb, C.J.; Phillips, W.D.; Edwards, M.; Campbell, G.K. Hysteresis in a quantized superfluid ‘atomtronic’circuit. Nature 2014, 506, 200–203. [Google Scholar] [CrossRef]



Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepino, R.A. Advances in Atomtronics. Entropy 2021, 23, 534. https://doi.org/10.3390/e23050534
Pepino RA. Advances in Atomtronics. Entropy. 2021; 23(5):534. https://doi.org/10.3390/e23050534
Chicago/Turabian StylePepino, Ron A. 2021. "Advances in Atomtronics" Entropy 23, no. 5: 534. https://doi.org/10.3390/e23050534
APA StylePepino, R. A. (2021). Advances in Atomtronics. Entropy, 23(5), 534. https://doi.org/10.3390/e23050534

