Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information
Abstract
1. Introduction
2. Materials and Methods
2.1. Circular Step-Wedge Phantom
2.2. Contrast-Detail Resolution Phantom
2.3. Image Data Acquisition
2.4. Mutual Information with a CSW Phantom
2.5. Visible Ratio with a CDR Phantom
2.6. Heel Effect Correction
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CSW | Circular Step-Wedge |
| CDR | Contrast-Detail Resolution |
| HEC | Heel Effect Correction |
| MTF | Modulation Transfer Function |
| nMI | normalized Mutual Information |
| NPS | Noise Power Spectrum |
| ROI | Region of Interest |
| VR | Visible Ratio |
References
- Fujita, H.; Doi, K.; Giger, M.L. Investigation of Basic Imaging Properties in Digital Radiography. 6. Mtfs of Ii-Tv Digital Imag-ing-Systems. Med. Phys. 1985, 12, 713–720. [Google Scholar] [CrossRef]
- Giger, M.L.; Doi, K. Investigation of Basic Imaging Properties in Digital Radiography. 3. Effect of Pixel Size on Snr and Thresh-old Contrast. Med. Phys. 1985, 12, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Avakyan, A.K.; Dergacheva, I.L.; Elanchik, A.A.; Korovkin, D.Y.; Krylova, T.A.; Lobzhanidze, T.K.; Polikhov, S.A.; Smirnov, V.P. Method for Determining the Point Spread Function for a Digital Radiography System. At. Energy 2020, 127, 310–315. [Google Scholar] [CrossRef]
- Samei, E.; Ranger, N.T.; MacKenzie, A.; Honey, I.D.; Dobbins, J.T.; Ravin, C.E. Detector or System? Extending the Concept of Detec-tive Quantum Efficiency to Characterize the Performance of Digital Radiographic Imaging Systems. Radiology 2008, 249, 926–937. [Google Scholar] [CrossRef]
- Drangova, M.; Rowlands, J.A. Optical factors affecting the detective quantum efficiency of radiographic screens. Med. Phys. 1986, 13, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.C.; Huff, K.E.; Van Metter, R. Analysis of the detective quantum efficiency of a radiographic screen–film combination. J. Opt. Soc. Am. A 1987, 4, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Sund, P.; Bath, M.; Kheddache, S.; Mansson, L.G. Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur. Radiol. 2004, 14, 48–58. [Google Scholar] [PubMed]
- Uffmann, M.; Schaefer-Prokop, C.; Neitzel, U.; Weber, M.; Herold, C.J.; Prokop, M. Skeletal applications for flat-panel versus stor-age-phosphor radiography: Effect of exposure on detection of low-contrast details. Radiology 2004, 231, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Nickoloff, E.L.; So, J.C.; Dutta, A.K. Comparison of computed radiography and film/screen combination using a con-trast-detail phantom. J. Appl. Clin. Med. Phys. 2001, 4, 91–98. [Google Scholar] [CrossRef]
- Konst, B.; Weedon-Fekjaer, H.; Båth, M. Image quality and radiation dose in planar imaging—Image quality figure of merits from the CDRAD phantom. J. Appl. Clin. Med. Phys. 2019, 20, 151–159. [Google Scholar] [CrossRef] [PubMed]
- De Crop, A.; Bacher, K.; Van Hoof, T.; Smeets, P.V.; Smet, B.S.; Vergauwen, M.; Kiendys, U.; Duyck, P.; Verstraete, K.; D’Herde, K.; et al. Correlation of Contrast-Detail Analysis and Clinical Image Quality Assessment in Chest Radiography with a Human Ca-daver Study. Radiology 2012, 262, 298–304. [Google Scholar] [CrossRef]
- Weir, A.; Salo, E.-N.; Janeczko, A.J.; Douglas, J.; Weir, N.W. Evaluation of CDRAD and TO20 test objects and associated software in digital radiography. Biomed. Phys. Eng. Express 2019, 5, 065001. [Google Scholar] [CrossRef]
- Matsuyama, E.; Tsai, D.Y.; Lee, Y. Mutual information-based evaluation of image quality with its preliminary application to as-sessment of medical imaging systems. J. Electron. Imaging 2009, 18, 033011. [Google Scholar] [CrossRef]
- Tsai, D.-Y.; Lee, Y.; Matsuyama, E. Information Entropy Measure for Evaluation of Image Quality. J. Digit. Imaging 2007, 21, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Mesbahi, A.; Zakariaee, S.S. Effect of anode angle on photon beam spectra and depth dose characteristics for X-RAD320 or-thovoltage unit. Rep. Pract. Oncol. Radiother. 2013, 18, 148–152. [Google Scholar] [CrossRef][Green Version]
- Kusk, M.W.; Jensen, J.M.; Gram, E.H.; Nielsen, J.; Precht, H. Anode heel effect: Does it impact image quality in digital radiography? A systematic literature review. Radiography 2021. [Google Scholar] [CrossRef]
- Mraity, H.; Walton, L.; England, A.; Thompson, J.; Lanca, L.; Hogg, P. Can the anode heel effect be used to optimise radiation dose and image quality for AP pelvis radiography? Radiography 2020, 26, e103–e108. [Google Scholar] [CrossRef] [PubMed]
- Buissink, C.; Bowdler, M.; Abdullah, A.; Al-Murshedi, S.; Custódio, S.; Huhn, A.; Jorge, J.; Ali, M.; Peters, A.L.; Rey, Y.; et al. Impact of the Anode Heel Effect on Image Quality and Effective Dose for AP Pelvis: A Pilot Study; University of Salford: Salford, UK, 2017. [Google Scholar]
- Behiels, G.; Maes, F.; Vandermeulen, D.; Suetens, P. Retrospective correction of the heel effect in hand radiographs. Med. Image Anal. 2002, 6, 183–190. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J. Heel effect adaptive flat field correction of digital X-ray detectors. Med. Phys. 2013, 40, 081913. [Google Scholar] [CrossRef][Green Version]
- do Nascimento, M.Z.; Frere, A.F.; Germano, F. An automatic correction method for the heel effect in digitized mammography images. J. Digit. Imaging 2008, 21, 177–187. [Google Scholar] [CrossRef][Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; A Wiley-Interscience Publication: New York, NY, USA, 1991. [Google Scholar]
- Szczepanski, J.; Arnold, M.; Wajnryb, E.; Amigo, J.M.; Sanchez-Vives, M.V. Mutual information and redundancy in spontaneous communication between cortical neurons. Biol. Cybern. 2011, 104, 161–174. [Google Scholar] [CrossRef]
- Pregowska, A.; Szczepanski, J.; Wajnryb, E. Mutual information against correlations in binary communication channels. BMC Neurosci. 2015, 16, 32. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, H.Y. Statistical notes for clinical researchers: Post-hoc multiple comparisons. Restor. Dent. Endod. 2015, 40, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Saccenti, E.; Hendriks, M.; Smilde, A.K. Corruption of the Pearson correlation coefficient by measurement error and its estima-tion, bias, and correction under different error models. Sci. Rep. 2020, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.N.; Fung, G.S.K.; Siewerdsen, J.H.; Tsui, B.M.W. A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom. Med. Phys. 2013, 40, 051907. [Google Scholar] [CrossRef] [PubMed]









Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, M.-C. Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy 2021, 23, 525. https://doi.org/10.3390/e23050525
Chou M-C. Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy. 2021; 23(5):525. https://doi.org/10.3390/e23050525
Chicago/Turabian StyleChou, Ming-Chung. 2021. "Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information" Entropy 23, no. 5: 525. https://doi.org/10.3390/e23050525
APA StyleChou, M.-C. (2021). Evaluation of Non-Uniform Image Quality Caused by Anode Heel Effect in Digital Radiography Using Mutual Information. Entropy, 23(5), 525. https://doi.org/10.3390/e23050525

